IIHE people

 

Experiments

 

Directions

IIHE - Interuniversity Institute for High Energies (ULB-VUB)

The IIHE was created in 1972 at the initiative of the academic authorities of both the Université Libre de Bruxelles and Vrije Universiteit Brussel.
Its main topic of research is the physics of elementary particles.
The present research programme is based on the extensive use of the high energy particle accelerators and experimental facilities at CERN (Switzerland) and DESY (Germany) as well as on non-accelerator experiments at the South Pole.
The main goal of this experiments is the study of the strong, electromagnetic and weak interactions of the most elementary building blocks of matter. All these experiments are performed in the framework of large international collaborations and have led to important R&D activities and/or applications concerning particle detectors and computing and networking systems.
Research at the IIHE is mainly funded by Belgian national and regional agencies, in particular the Fonds National de la Recherche Scientifique (FNRS) en het Fonds voor Wetenschappelijk Onderzoek (FWO) and by both universities through their Research Councils.
The IIHE includes 19 members of the permanent scientific staff, 20 postdocs and guests, 31 doctoral students, 8 masters students, and 15 engineering, computing and administrative professionals.

CMS

Here you see the installation of the the Compact Muon Solenoid forward tracker,

which was partly built at the IIHE. The IIHE contributed to the construction of the over 200 square meter silicon tracker, the most ambitious particle tracking detector every built. Contributions were made to the assembly of detectors and their support structures, and the assembly of the detectors on a wheel such as you can see here. The tracker was installed inside the Compact Muon Solenoid detector in December 2007.

CMS

Shown here is a record breaking event from the 2010 LHC run at the Compact Muon Solenoid,

a collision event with both an electron and very high missing transverse energy. The electron is represented by the red trapezoid (the length is proportional to the electron's energy), while the transverse energy is represented by the red arrow. Missing transverse energy is a quantity used to identify particles that did not leave a detectable signature. The IIHE is actively involved in the study of this kind of collisions, in collaboration with other groups of the CMS experiment. If the rate of these kind of collisions would be unexpectedly high, it would be a hint of the existence of, for example, extra dimensions.

CMS

Observation of a New Particle with a Mass of 125 GeV

In a joint seminarar at CERN and the “ICHEP 2012” conference in Melbourne, researchers of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) presented their preliminary results on the search for the standard model (SM) Brout-Englert-Higgs boson in their data recorded up to June 2012. CMS observes an excess of events at a mass of approximately 125 GeV with a statistical significance of five standard deviations (5 sigma) above background expectations. The probability of the background alone fluctuating up by this amount or more is about one in three million. The evidence is strongest in the two final states with the best mass resolution: first the two-photon final state and second the final state with two pairs of charged leptons (electrons or muons). We interpret this to be due to the production of a previously unobserved particle with a mass of around 125 GeV.

IceCube

Astroparticle Physics revolves around phenomena that involve (astro)physics under the most extreme conditions.

Cosmic explosions, involving black holes with masses a billion times greater than the mass of the Sun, accelerate particles to velocities close to the speed of light and display a variety of relativistic effects. The produced high-energy particles may be detected on Earth and as such can provide us insight in the physical processes underlying these cataclysmic events. Having no electrical charge and interacting only weakly with matter, neutrinos are special astronomical messengers. Only they can carry information from violent cosmological events at the edge of the observable universe directly towards the Earth. At the Inter-university Institute for High Energies (IIHE) in Brussels we are involved in a world wide effort to search for high-energy neutrinos originating from cosmic phenomena. For this we use the IceCube neutrino observatory at the South Pole, the world's largest neutrino telescope which is now completed and taking data.

IceCube

IIHE students at the South Pole

At the Inter-university Institute for High Energies (IIHE) in Brussels we are involved in a world wide effort to search for high-energy neutrinos originating from cosmic phenomena. For this we use the IceCube neutrino observatory at the South Pole, the world's largest neutrino telescope which is now completed and taking data.Here you see a really cool phenomenon made by ice crystals that are drifting in the air at low levels and acting as prisms for the light rays passing through them. In this way, a halo around the sun is visible. In this picture, IIHE PhD Student David put his head in front of the sun and the halo becomes visible more easily.

CMS

The needle in the haystack

Physicists working in the CMS experiment regularly have to spend their time searching for a needle in a haystack. In other words we look for the rarest of rare collisions that represent very unlikely physics processes. An example of work done at the IIHE is the search for the production of four top quarks (the needle) in the huge dataset recorded by CMS in 2012 (the haystack). Our results put an extremely tight limit on the production of four top quarks, indeed the tightest limit at the LHC so far. As four top quarks are also produced in many new theories of physics such as supersymmetry, this limit can tell us a lot about the validity of these theories.

CMS

Here you see the installation of the the Compact Muon Solenoid forward tracker,

which was partly built at the IIHE. The IIHE contributed to the construction of the over 200 square meter silicon tracker, the most ambitious particle tracking detector every built. Contributions were made to the assembly of detectors and their support structures, and the assembly of the detectors on a wheel such as you can see here. The tracker was installed inside the Compact Muon Solenoid detector in December 2007.

IceCube

Here you see an event recorded by IceCube in January 2008, when the detector was still in construction!

At that time, 22 strings were already taking data and 18 other strings were freshly deployed. Every colored bubble indicates the detection of one or more Cerenkov photons created by the cross of a charged particle by one of the sensors deployed in the ice. The size of the circles reflects the intensity of the signal. The color indicates the arrival time from red (early) to blue (late). These informations combined with the geometry of the detector allow first guess reconstructions of the initial track.

IIHE - Copyright © 2010-2014