Introduction à la physique nucléaire et aux réacteurs nucléaires

Nassiba Tabti

A.E.S.S. Physique

UNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPE

Plan de l'exposé

- 1 La Radioactivité
 - Découverte de la radioactivité
 - Structure du noyau
 - Stabilité du noyau
 - Transmutation des noyaux
 - Demie-vie
- 2 Les réactions nucléaires
 - La fission
 - La fusion
- 3 LES RÉACTEURS NUCLÉAIRES
 - Les réacteurs à fission
 - Les réacteurs à fusion

- 1 La Radioactivité
 - Découverte de la radioactivité
 - Structure du noyau
 - Stabilité du noyau
 - Transmutation des noyaux
 - Demie-vie
- 2 LES RÉACTIONS NUCLÉAIRES
 - La fission
 - La fusion
- 3 Les réacteurs nucléaires
 - Les réacteurs à fission
 - Les réacteurs à fusion

- 1 La Radioactivité
 - Découverte de la radioactivité
 - Structure du noyau
 - Stabilité du noyau
 - Transmutation des noyaux
 - Demie-vie
- 2 LES RÉACTIONS NUCLÉAIRES
 - La fission
 - La fusion
- 3 Les réacteurs nucléaires
 - Les réacteurs à fission
 - Les réacteurs à fusion

La physique nucléaire a vu le jour en février 1896 avec la découverte de la radioactivité laquelle avait été préparée par la découverte des rayons X.

- 1895 : Découverte des rayons X par Röntgen
- Rayons X accompagnent-ils toujours la fluorescence?
- 1896 : Découverte fortuit de Becquerel : sels d'uranium non fluorescents émettent spontanément un rayonnement très pénétrants
- Marie Curie nomma radioactivité le phénomène découvert par Becquerel
- 1897-1898 : Découverte par Pierre et Marie Curie de nouveaux éléments radioactifs : le polonium et le radium



En frappant parois en verre d'un tube à décharge, e^- le rendaient fluorescent \Longrightarrow émission nouveau type de radiation = rayons X

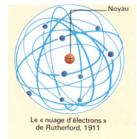
- 1895 : Découverte des rayons X par Röntgen
- Rayons X accompagnent-ils toujours la fluorescence?
- 1896 : Découverte fortuit de Becquerel : sels d'uranium non fluorescents émettent spontanément un rayonnement très pénétrants
- Marie Curie nomma radioactivité le phénomène découvert par Becquerel
- 1897-1898 : Découverte par Pierre et
 Marie Curie de nouveaux éléments sur une plaque photographique enveloppée dans du papier radioactifs : le polonium et le radium
 Matériau fluorescent (après exposition lumière)
 sur une plaque photographique enveloppée dans du papier noir ⇒ aucun rayon X ne venait altérer la plaque

- 1895 : Découverte des rayons X par Röntgen
- Rayons X accompagnent-ils toujours la fluorescence?
- 1896 : Découverte fortuit de Becquerel : sels d'uranium non fluorescents émettent spontanément un rayonnement très pénétrants
- Marie Curie nomma radioactivité le phénomène découvert par Becquerel
- 1897-1898 : Découverte par Pierre et Marie Curie de nouveaux éléments radioactifs : le polonium et le radium

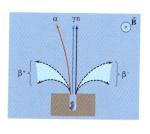
Rayons X \Longrightarrow pas associés à la fluorescence Uranium = agent actif

- $\bullet \ 1895$: Découverte des rayons X par Röntgen
- Rayons X accompagnent-ils toujours la fluorescence?
- 1896 : Découverte fortuit de Becquerel : sels d'uranium non fluorescents émettent spontanément un rayonnement très pénétrants
- Marie Curie nomma radioactivité le phénomène découvert par Becquerel
- 1897-1898 : Découverte par Pierre et Marie Curie de nouveaux éléments radioactifs : le polonium et le radium

- $\bullet \ 1895$: Découverte des rayons X par Röntgen
- Rayons X accompagnent-ils toujours la fluorescence?
- 1896 : Découverte fortuit de Becquerel : sels d'uranium non fluorescents émettent spontanément un rayonnement très pénétrants
- Marie Curie nomma radioactivité le phénomène découvert par Becquerel
- 1897-1898 : Découverte par Pierre et Marie Curie de nouveaux éléments radioactifs : le polonium et le radium



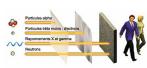
Constats:


- $\bullet \,$ 1g de radium dégage 10^5 fois la puis sance dégagée lors de n'importe quelle réaction chimique
- facteurs influançant réactions chimiques : aucun effet sur la radioactivité
- atomes manifestaient la même radioactivité indépendamment de leur état chimique

Radioactivité due à un processus inconnu

Il a fallu attendre le modèle atomique de Rutherford (avec l'introduction du noyau) pour comprendre que le noyau était la source de la radioactivité \Longrightarrow Physique nucléaire

- Rayonnement trouvé par Becquerel \Longrightarrow baptisé α par Rutherford qui démontra en 1908 qu'il s'agissait de noyaux d'hélium.
- En étudiant les proportions des émissions radioactives capable de traverser un obstacle \Longrightarrow Rutherford trouva qu'il y avait différents types d'émissions radioactives \Longrightarrow Classement de ces émissions par leur pouvoir de pénétration, leur masse et leur charge électrique

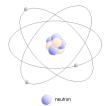


 α : noyaux d'Helium ${}_{2}^{4}$ He

 β^- : électrons e^-

 β^+ : positons e^+

 γ : ondes électromagnétiques


Emissions radioactives

Pouvoir de pénétration

Les émissions radioactives liées à la stabilité du noyau.

- 1 La Radioactivité
 - Découverte de la radioactivité
 - Structure du noyau
 - Stabilité du noyau
 - Transmutation des noyaux
 - Demie-vie
- 2 LES RÉACTIONS NUCLÉAIRES
 - La fission
 - La fusion
- 3 Les réacteurs nucléaires
 - Les réacteurs à fission
 - Les réacteurs à fusion

STRUCTURE DU NOYAU

Atome= nuage électronique en mouvement autour d'un noyau Noyau :

- composé de protons et de neutrons
- 10^4 à 10^5 fois plus petit que l'atome tout entier [Taille noyau fm= 10^{-15} m]
- contient 99,9% masse totale atome

- Nombre de protons = Z [numéro atomique]
- Nombre de neutrons= N
- Total des nucléons= N+Z= A [nombre de masse]

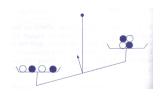
Désignation nuclide

Isotopes d'un élément : Atome dont le noyau a le même nombre de protons mais un nombre de neutrons différents

- 1 La Radioactivité
 - Découverte de la radioactivité
 - Structure du noyau
 - Stabilité du noyau
 - Transmutation des noyaux
 - Demie-vie
- 2 LES RÉACTIONS NUCLÉAIRES
 - La fission
 - La fusion
- 3 Les réacteurs nucléaires
 - Les réacteurs à fission
 - Les réacteurs à fusion

Défaut de masse et énergie de liaison

- \bullet Noyaux instables \Longrightarrow Emissions radioactives
- $\bullet\,$ Noyaux stables \Longrightarrow Aucune radioactivité


Nucléons forment un état lié Cohésion du noyau due à la force nucléaire

Défaut de masse et énergie de liaison

- \bullet Noyaux instables \Longrightarrow Emissions radioactives
- $\bullet\,$ Noyaux stables \Longrightarrow Aucune radioactivité
- Nucléons forment un état lié Cohésion du noyau due à la force nucléaire
- Diminution d'énergie potentielle lors de l'approche des nucléons à une distance en deça de la portée de la force nucléaire
- Diminution d'énergie \Longrightarrow Diminution de masse (équivalence masse-énergie : $E = mc^2$).

DÉFAUT DE MASSE ET ÉNERGIE DE LIAISON

- \bullet Noyaux instables \Longrightarrow Emissions radioactives
- $\bullet\,$ Noyaux stables \Longrightarrow Aucune radioactivité
- Nucléons forment un état lié Cohésion du noyau due à la force nucléaire
- Diminution d'énergie potentielle lors de l'approche des nucléons à une distance en deça de la portée de la force nucléaire
- Diminution d'énergie \Longrightarrow Diminution de masse (équivalence masse-énergie : $E = mc^2$).


Qu'il soit stable ou instable

$$m_{noyau} < Zm_{protons} + Nm_{neutons} \label{eq:moyau}$$

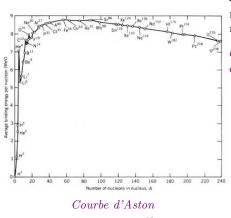
Défaut de masse :
$$\Delta m = \sum m_{nucléons} - m_{noyau}$$

DÉFAUT DE MASSE ET ÉNERGIE DE LIAISON

- $\bullet \ \ {\rm Noyaux \ instables} \Longrightarrow {\rm Emissions \ radioactives}$
- $\bullet\;$ Noyaux stables \Longrightarrow Aucune radioactivité
- Nucléons forment un état lié Cohésion du noyau due à la force nucléaire
- Diminution d'énergie potentielle lors de l'approche des nucléons à une distance en deça de la portée de la force nucléaire
- Diminution d'énergie \Longrightarrow Diminution de masse (équivalence masse-énergie : $E = mc^2$).

Qu'il soit stable ou instable

$$m_{noyau} < Zm_{protons} + Nm_{neutons} \label{eq:moyau}$$


Défaut de masse :
$$\Delta m = \sum m_{nucl\acute{e}ons} - m_{noyau}$$

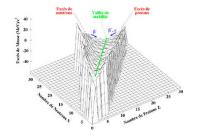
Pour séparer complètement les nucléons d'un noyau — Fournir au noyau une énergie appelée énergie de liaison

$$E_{\ell} = \Delta m.c^2$$

Energie de liaison par nucléon

Afin de comparer les énergies de liaison de différents noyaux, il est commode de calculer l'énergie de liaison moyenne par nucléon E_{ℓ}/A .

 $1 \text{ eV} = 1,602 \cdot 10^{-19} \text{ J}$

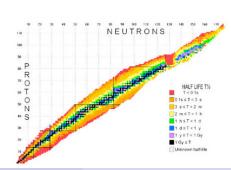

- E_{ℓ}/A / jusqu'à $A \sim 50$ puis \ peu à peu

- Noyaux plus liés que la norme : ⁴₂He et noyaux avec un nombre pair de protons et un nombre pair de neutrons (¹²C, ¹⁶O).

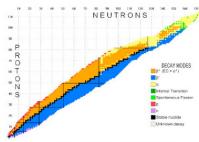
Contributions de la courbe d'Aston par Bethe et Weizsäcker

- nucléons moins liés à la surface du novau (car moins de voisins)
- $Z \approx N$ (mécanique quantique : principe d'exclusion de Pauli)
- répulsion électrique des protons
- Noyaux pairs-pairs plus stable que noyaux pairs-impairs et impairs-impairs (p⁺ et n minimisent leur énergie en

Formule empirique de Bethe-Weizsäcker $\Longrightarrow E_{\ell}/A$ (Z, N)



Représentation du début de la vallée de stabilité


Noyaux plus lourds ont besoin d'une plus grande proportion de neutrons pour compenser la répulsion des protons.

 \longrightarrow Relief reprenant l'énergie de liaison en fonction de Z et N

Creux = noyaux plus liés Pics = noyaux moins liés

- 1 La Radioactivité
 - Découverte de la radioactivité
 - Structure du noyau
 - Stabilité du noyau
 - Transmutation des noyaux
 - Demie-vie
- 2 LES RÉACTIONS NUCLÉAIRES
 - La fission
 - La fusion
- 3 Les réacteurs nucléaires
 - Les réacteurs à fission
 - Les réacteurs à fusion

Tout système tend à minimiser son énergie ⇒ transmutation d'un noyau en un autre

Figure 6: Chart of the markides for decay modes (created by NUCLEUS AAMC)

Radioactivité α

$$^{\mathrm{A}}_{\mathrm{Z}}\mathrm{X} \longrightarrow \,^{4}_{2}\alpha \,\,+\,\,^{\mathrm{A}-4}_{\mathrm{Z}-2}\mathrm{Y}$$

Radioactivité β

$$\beta^-: {}^{\mathbf{A}}_{\mathbf{Z}}\mathbf{X} \longrightarrow {}^{\mathbf{A}}_{\mathbf{Z}+1}\mathbf{Y} + e^- + \bar{\nu}_e$$

$$n \longrightarrow p + e^- + \bar{\nu}_e$$

$$\beta^+: {}_{\mathbf{Z}}^{\mathbf{A}}\mathbf{X} \longrightarrow {}_{\mathbf{Z}-1}^{\mathbf{A}}\mathbf{Y} + e^+ + \nu_e$$

$$p \longrightarrow n + e^+ + \nu_e$$

ex :
$${}^{210}_{83}{\rm Bi} \longrightarrow {}^{210}_{84}{\rm Po} + e^- + \bar{\nu}_e$$

Radioactivité γ

$$_{Z}^{A}$$
 X * \longrightarrow_{Z}^{A} X + γ état excité

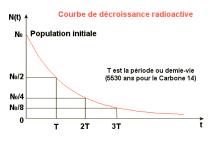
accompagne désintégration α ou β

 $ex: {}^{226}_{99}Ra \longrightarrow {}^{4}_{9}He + {}^{222}_{96}Rn$

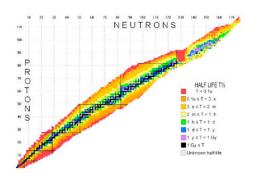
- 1 La Radioactivité
 - Découverte de la radioactivité
 - Structure du noyau
 - Stabilité du noyau
 - Transmutation des noyaux
 - Demie-vie
- 2 LES RÉACTIONS NUCLÉAIRES
 - La fission
 - La fusion
- 3 Les réacteurs nucléaires
 - Les réacteurs à fission
 - Les réacteurs à fusion

Demie-vie

Processus de transmutation quantique \Longrightarrow Phénomène aléatoire il est impossible de savoir quand un noyau donné va se transmuter


Chaque noyau identique a une probabilité identique de se désintégrer au cours du temps

Loi de désintégration radioactive $\frac{dN}{dt} = -\lambda N$


Nombre de noyaux à l'instant t

$$N=N_0e^{-\lambda t}$$
où $\lambda=rac{\ln 2}{T_{1/2}}$

Il faut une demie-vie $(T_{1/2})$ pour que la moitié des noyaux de départ se désintègrent

4□ > 4□ > 4□ > 4□ > 4□ > 9

Noyau	Période	Mode
Uranium 238	4.47 milliards d'années	Alpha
Potassium 40	1.28 milliards d'années	Bêta
lode 129	15.7 millions d'années	Bêta
Plutonium 239	24 000 ans	Alpha
Carbone 14	5730 ans	Bêta
Radium 226	1602 ans	Alpha
Césium 137	30 ans	Bêta puis gamma
Strontium 90	28 ans	Bêta
Cobalt 60	5.26 ans	Bêta puis gamma
Polonium 210	138 jours	Alpha
lode 131	8 jours	Bêta
lode 130	12 heures	Bêta
lode 132	2.3 heures	Bêta
Polonium 216	158 millisecondes	Alpha

- 1 La Radioactivité
 - Découverte de la radioactivité
 - Structure du noyau
 - Stabilité du noyau
 - Transmutation des noyaux
 - Demie-vie
- 2 LES RÉACTIONS NUCLÉAIRES
 - La fission
 - La fusion
- 3 Les réacteurs nucléaires
 - Les réacteurs à fission
 - Les réacteurs à fusion

• Première réaction nucléaire provoquée en 1919 par Rutherford :

$${}^4_2\alpha + {}^{14}_7\mathrm{N} \longrightarrow {}^{17}_8\mathrm{O} + \mathrm{p}$$

EQUATION D'UNE RÉACTION NUCLÉAIRE

$$a + X \longrightarrow Y + b + Q$$

avec énergie de la réaction $Q = (m_a + m_X - m_Y - m_b) c^2$

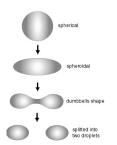
si Q > 0 réaction exothermique si Q < 0 réaction endothermique

• Découverte de la radioactivité artificielle en 1934 par Frédéric Joliot et Irène Joliot Curie : un isotope radioactif du phosphore a été produit à partir de l'aluminium non radioactif en le bombardant de particules α .

$$^{27}_{13}$$
Al + $\alpha \longrightarrow ^{30}_{15}$ P + n

• Autre exemple de réaction nucléaire :

$$^{1}_{1}H + ^{18}_{8}O \longrightarrow ^{18}_{9}F + n$$

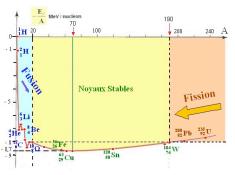

Le fluor ${}_{9}^{18}$ F est isotope artificiel produit pour son usage en médecine dans les appareils TEP (Tomographie par Emissions de Positons).

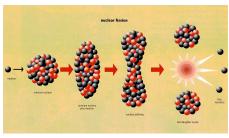
- 1 La Radioactivité
 - Découverte de la radioactivité
 - Structure du noyau
 - Stabilité du noyau
 - Transmutation des noyaux
 - Demie-vie
- 2 LES RÉACTIONS NUCLÉAIRES
 - La fission
 - La fusion
- 3 Les réacteurs nucléaires
 - Les réacteurs à fission
 - Les réacteurs à fusion

Idée de Fermi : Pour induire radioactivité artificielle plus facilement et pour produire des éléments transuraniens \Longrightarrow Bombarder l'uranium avec des neutrons (pénétration du noyau plus facile car ils sont sans charges)!

Observation de la première fission nucléaire artificielle

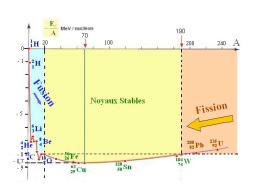
Modèle nucléaire de la goutte liquide Après déformation, répulsion électrique devient > force nucléaire \Longrightarrow Fission

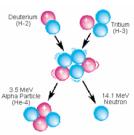

$$n+^{235}_{92} \text{U} \longrightarrow \ ^{236}_{92} \text{U}^* \longrightarrow \ ^{140}_{54} \text{Xe} +^{94}_{38} \text{Sr} + 2\text{n} + Q$$
avec $Q \approx 200 MeV >>$ énergie libérée lors d'une


réaction chimique

Cette équation représente une des réactions possibles de fission de l'uranium 636 U*.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めのぐ


LA FISSION



- 1 La Radioactivité
 - Découverte de la radioactivité
 - Structure du noyau
 - Stabilité du noyau
 - Transmutation des noyaux
 - Demie-vie
- 2 LES RÉACTIONS NUCLÉAIRES
 - La fission
 - La fusion
- 3 Les réacteurs nucléaires
 - Les réacteurs à fission
 - Les réacteurs à fusion

LA FUSION

Deuterium-Tritium Fusion Reaction

Deux noyaux légers se combinent pour former un noyau plus lourd

LA FUSION

- Pour fusionner des noyaux \Longrightarrow Barrière de potentiel créée par leur répulsion coulombienne à surmonter
- Exemple : Pour approcher deux deutérons (2_1 H) l'un de l'autre de sorte que la force nucléaire les fasse fusionner, chaque deutéron a besoin d'une énergie cinétique $\approx 200 keV$.

RÉACTION DE FUSION NATURELLE : CHAÎNE P-P AU SEIN DU SOLEIL

$$\begin{array}{cccc} p+p & \longrightarrow & ^2H+e^++\nu & \quad \text{probabilit\'e faible} \Rightarrow \text{fusion lente} \\ p+^2H & \longrightarrow & ^3He+\gamma \\ ^3He+^3He & \longrightarrow & ^4He+p+p \end{array}$$

- 1 La Radioactivité
 - Découverte de la radioactivité
 - Structure du noyau
 - Stabilité du noyau
 - Transmutation des noyaux
 - Demie-vie
- 2 LES RÉACTIONS NUCLÉAIRES
 - La fission
 - La fusion
- 3 LES RÉACTEURS NUCLÉAIRES
 - Les réacteurs à fission
 - Les réacteurs à fusion

- 1 La Radioactivité
 - Découverte de la radioactivité
 - Structure du noyau
 - Stabilité du noyau
 - Transmutation des noyaux
 - Demie-vie
- 2 LES RÉACTIONS NUCLÉAIRES
 - La fission
 - La fusion
- 3 LES RÉACTEURS NUCLÉAIRES
 - Les réacteurs à fission
 - Les réacteurs à fusion

Type de réacteurs de fission


Il existe deux types de réacteurs de fission :

- Réacteurs à neutrons lents (les plus répandus)
- Réacteurs à neutrons rapides

Principe de fonctionnement des réacteurs à neutrons lents

Principaux réacteurs à fission fonctionnent à partir de la fission de noyaux lourds : $^{235}_{\rm UU}$ U

$$n + {}^{235}_{92} \text{U} \longrightarrow {}^{140}_{54} \text{Xe} + {}^{93}_{38} \text{Sr} + 3\text{n} + Q$$

Réaction en chaîne :

Entretien de la réaction par les neutrons

produits

- Abondance naturelle : $0.7\%_{92}^{235}$ U (fissible) et $99.3\%_{93}^{238}$ U (non fissible)
- Rencontre des neutrons avec les noyaux n'est pas évidente \Longrightarrow Masse critique : masse minimale à atteindre pour réaliser une réaction en chaîne ($\approx 50 \text{ kg d'} \frac{235}{92} \text{U}$ pur) \Longrightarrow Combustible nucléaire : $\frac{235}{92} \text{ U}$ enrichi (teneur en $\frac{235}{92} \text{ U}$ remontée à 3%) ou non enrichi.

Modérateur

- Probabilité de fission de $^{235}_{92}$ U élevée pour des neutrons lents $\sim 1 \mathrm{eV}$.
- MAIS produits de fission : neutrons de hautes énergies $\sim 2 {\rm MeV} \Longrightarrow$ ils doivent être ralentis (neutrons thermiques) pour induire d'autres fissions

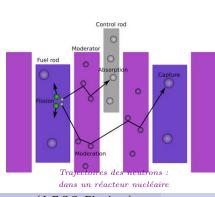
Utilisation d'un modérateur

Vue du coeur

Energie transmise par une particule incidente à une particule cible est maximale quand elles ont \pm la même masse.

Types de modérateur :

- Eau lourde (²D₂O) : efficace si combustible= U naturel
- Eau légère : efficace si combustible = U enrichi
- Graphite


L'Uranium est disposé dans des crayons de Zircaloy immergés dans le modérateur

Modérateur

- Probabilité de fission de $^{235}_{92}$ U élevée pour des neutrons lents $\sim 1 \text{eV}$.
- MAIS produits de fission : neutrons de hautes énergies $\sim 2 {\rm MeV} \Longrightarrow$ ils doivent être ralentis (neutrons thermiques) pour induire d'autres fissions

Utilisation d'un modérateur

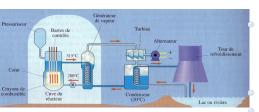
Energie transmise par une particule incidente à une particule cible est maximale quand elles ont \pm la même masse.

Types de modérateur :

- Eau lourde (²D₂O) : efficace si combustible= U naturel
- Eau légère : efficace si combustible = U enrichi
- Graphite

L'Uranium est disposé dans des crayons de Zircaloy immergés dans le modérateur

Taille critique et contrôle


Facteur multiplicatif k= rapport du nombre de neutrons dune génération de la réaction en chaîne au nombre de neutrons de la génération précédente.

- k = 1 Système critique (nombre neutrons produits= nombre neutrons perdus)
- k < 1 Système est sous-critique
- k > 1 Système est super-critique (\Longrightarrow fonte du réacteur et vaporisation de l'eau du modérateur)

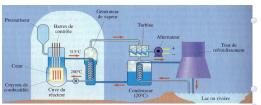
Maintien de k=1 dans un réacteur nucléaire en insérant des barres de contrôle de Cadmium (qui ont une grande section efficace pour absorber les neutrons).

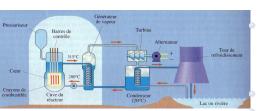
Les réacteurs à eau préssurisée (REP) sont les plus répandus à l'heure actuelle

- Cuve du réacteur = Coeur + modérateur
- Eau du modérateur atteint 300^{0} C \Longrightarrow Pression élevée empêche ébullition de l'eau
- Eau du modérateur sert également de matériau de refroidissement dans le circuit primaire
- Générateur de vapeur : il y a un échange thermique de l'eau du modérateur qui transfère sa chaleur à l'eau d'un circuit de refroidissement secondaire qui est convertie en vapeur

Turbine \Longrightarrow alternateur

- Condenseur : Refroidissemnt vapeur passée dans les turbines par eau d'un réservoir
- Eau du réservoir chauffée refroidie par évaporation avant d'être renvoyée dans le réservoir
 → ◆ ② → ◆ ② → ◆ ③ → ○ ③

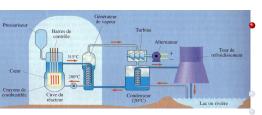

Les réacteurs à eau préssurisée (REP) sont les plus répandus à l'heure actuelle


- Eau du modérateur atteint $300^{0}C \Longrightarrow$ Pression élevée empêche ébullition de l'eau
- Eau du modérateur sert également de matériau de refroidissement dans le circuit primaire
- Générateur de vapeur : il y a un échange thermique de l'eau du modérateur qui transfère sa chaleur à l'eau d'un circuit de refroidissement secondaire qui est convertie en vapeur

Turbine \Longrightarrow alternateur

- Condenseur : Refroidissemnt vapeur passée dans les turbines par eau d'un réservoir
- Eau du réservoir chauffée refroidie par évaporation avant d'être renvoyée dans le réservoir

Les réacteurs à eau préssurisée (REP) sont les plus répandus à l'heure actuelle

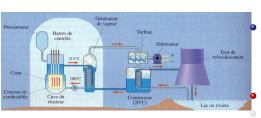

- Cuve du réacteur = Coeur + modérateur
- Eau du modérateur atteint 300⁰C

 Pression élevée empêche ébullition de l'eau
- Eau du modérateur sert également de matériau de refroidissement dans le circuit primaire
- Générateur de vapeur : il y a un échange thermique de l'eau du modérateur qui transfère sa chaleur à l'eau d'un circuit de refroidissement secondaire qui est convertie en vapeur

Turbine \Longrightarrow alternateur

- Condenseur : Refroidissemnt vapeur passée dans les turbines par eau d'un réservoir
- Eau du réservoir chauffée refroidie par évaporation avant d'être renvoyée dans le réservoir

Les réacteurs à eau préssurisée (REP) sont les plus répandus à l'heure actuelle

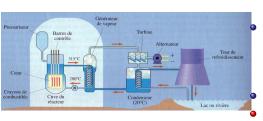

- Cuve du réacteur = Coeur + modérateur
- Eau du modérateur atteint 300⁰C

 Pression élevée empêche ébullition de l'eau
- Eau du modérateur sert également de matériau de refroidissement dans le circuit primaire
- Générateur de vapeur : il y a un échange thermique de l'eau du modérateur qui transfère sa chaleur à l'eau d'un circuit de refroidissement secondaire qui est convertie en vapeur

Turbine ⇒ alternateur

- Condenseur : Refroidissemnt vapeur passée dans les turbines par eau d'un réservoir
- Eau du réservoir chauffée refroidie par évaporation avant d'être renvoyée dans le réservoir

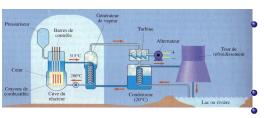
Les réacteurs à eau préssurisée (REP) sont les plus répandus à l'heure actuelle


- Cuve du réacteur = Coeur + modérateur
- Eau du modérateur atteint 300°C

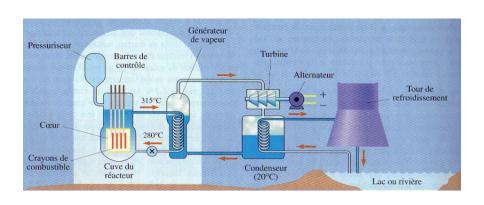
 Pression élevée empêche ébullition de l'eau
- Eau du modérateur sert également de matériau de refroidissement dans le circuit primaire
- Générateur de vapeur : il y a un échange thermique de l'eau du modérateur qui transfère sa chaleur à l'eau d'un circuit de refroidissement secondaire qui est convertie en vapeur

■ Turbine ⇒ alternateur

- Condenseur : Refroidissemnt vapeur passée dans les turbines par eau d'un réservoir
- Eau du réservoir chauffée refroidie par évaporation avant d'être renvoyée dans le réservoir


Les réacteurs à eau préssurisée (REP) sont les plus répandus à l'heure actuelle

- Cuve du réacteur = Coeur + modérateur
- Eau du modérateur atteint 300⁰C


 Pression élevée empêche ébullition de l'eau
- Eau du modérateur sert également de matériau de refroidissement dans le circuit primaire
- Générateur de vapeur : il y a un échange thermique de l'eau du modérateur qui transfère sa chaleur à l'eau d'un circuit de refroidissement secondaire qui est convertie en vapeur
- Turbine ⇒ alternateur
- Condenseur : Refroidissemnt vapeur passée dans les turbines par eau d'un réservoir
- Eau du réservoir chauffée refroidie par évaporation avant d'être renvoyée dans l réservoir

Les réacteurs à eau préssurisée (REP) sont les plus répandus à l'heure actuelle

- Cuve du réacteur = Coeur + modérateur
- Eau du modérateur atteint 300⁰C

 Pression élevée empêche ébullition de l'eau
- Eau du modérateur sert également de matériau de refroidissement dans le circuit primaire
- Générateur de vapeur : il y a un échange thermique de l'eau du modérateur qui transfère sa chaleur à l'eau d'un circuit de refroidissement secondaire qui est convertie en vapeur
- ▼ Turbine ⇒ alternateur
- Condenseur : Refroidissemnt vapeur passée dans les turbines par eau d'un réservoir
- Eau du réservoir chauffée refroidie par évaporation avant d'être renvoyée dans le réservoir

DÉCHETS RADIOACTIFS

- Produits de fission sont radioactifs
- Matériau du réacteur deviennent radioactifs (par activation des neutrons non capturés par l'Uranium)

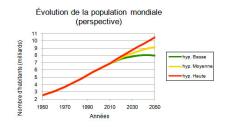
⇒ Gestion à long terme des déchets radioactifs

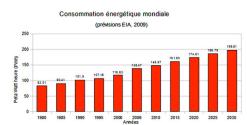
 \Longrightarrow Temps de vie d'un réacteur nucléaire $\simeq 30$ ans

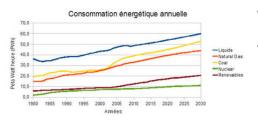
RÉACTEURS À NEUTRONS RAPIDES

Ce type de réacteur utilise le principe de surgénération.

Principe du surgénérateur : Production de plus de matière fissible qu'il n'en consomme en transmutant isotopes fertiles en isotopes fissibles.

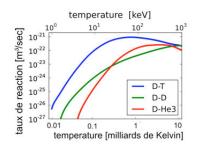

Exemple : $^{238}\mathrm{U}/^{239}$ Pu ou $^{232}\mathrm{Th}/^{233}$ U


Intérêt:


- Multiplication considérable de la quantité d'énergie liée à l'extraction de l'Uranium
- Utilisation du Thorium : beaucoup plus abondant que l'Uranium
- pas d'enrichissement nécessaire et pas d'utilisation de modérateur

- 1 La Radioactivité
 - Découverte de la radioactivité
 - Structure du noyau
 - Stabilité du noyau
 - Transmutation des noyaux
 - Demie-vie
- 2 LES RÉACTIONS NUCLÉAIRES
 - La fission
 - La fusion
- 3 LES RÉACTEURS NUCLÉAIRES
 - Les réacteurs à fission
 - Les réacteurs à fusion

Défi grandissant : demande énergétique



- Source d'énergies fossiles : charbonpétrole- gaz ⇒ réserve limitée
- Source d'énergie non fossiles : énergie renouvelables, la fission (cycle combiné avec surgénérateur) et la fusion

Taux de réaction R des réactions de fusions

 $A fin \ que \ les \ noyaux \ fusionnent, \ ils \ faut \ les \ confiner \ en \ leur \ apportant \ suffisamment \ d'énergie \ pour \ franchir \ la \ barrière \ électrostatique$

Taux de réaction R : quantifie la probabilité de la réaction de fusion

$$(D-D): {}^{2}H + {}^{2}H \longrightarrow {}^{3}He + n$$

$$(D-D): {}^{2}H + {}^{2}H \longrightarrow {}^{3}H + {}^{1}H$$

$$(D-T): {}^{2}H + {}^{3}H \longrightarrow {}^{4}He + n$$

 \Longrightarrow Réaction la plus probable : D-T

Intérêts de la fusion D-T

- \bullet D= isotope stable de H : en abondance sur Terre dans l'eau par exemple
- T= isotope radioactif de H $(T_{1/2} = 12, 3ans)$: quantité faible sur Terre mais peut être créée en utilisant les neutrons de la réaction D-T:

$$^6Li + n \longrightarrow ^4He + T$$

Lithium en abondance sur Terre

- \bullet Avantage écologique : temps de vie des déchets \sim centaine d'années
- Production de beaucoup plus d'énergie que la fission

- Haute température : $T>10^8 K$ permettant aux noyaux de surmonter la répulsion électrique mutuelle. A cette température : gaz ionisé appelé plasma
- Haute densité de particules : pour augmenter le taux de collision et le taux de réaction
- La durée du confinement : une fois les noyaux rapprochés, ils doivent rester suffisamment longtemps proche pour que la réaction de fusion aie lieu.

Critère de Lawson (1957)

Si n est la densité de particules et τ est la durée de confinement, une des conditions nécessaires pour que l'énergie libérée deviennent supérieure à l'énergie fournie au système :

$$D-T : n\tau > 10^{20} s/m^3$$

- Haute température : $T>10^8 K$ permettant aux noyaux de surmonter la répulsion électrique mutuelle. A cette température : gaz ionisé appelé plasma
- Haute densité de particules : pour augmenter le taux de collision et le taux de réaction
- La durée du confinement : une fois les noyaux rapprochés, ils doivent rester suffisamment longtemps proche pour que la réaction de fusion aie lieu.

Critère de Lawson (1957)

Si n est la densité de particules et τ est la durée de confinement, une des conditions nécessaires pour que l'énergie libérée deviennent supérieure à l'énergie fournie au système :

$$D-T : n\tau > 10^{20} s/m^3$$

- Haute température : $T>10^8 K$ permettant aux noyaux de surmonter la répulsion électrique mutuelle. A cette température : gaz ionisé appelé plasma
- Haute densité de particules : pour augmenter le taux de collision et le taux de réaction
- La durée du confinement : une fois les noyaux rapprochés, ils doivent rester suffisamment longtemps proche pour que la réaction de fusion aie lieu.

Critère de Lawson (1957)

Si n est la densité de particules et τ est la durée de confinement, une des conditions nécessaires pour que l'énergie libérée deviennent supérieure à l'énergie fournie au système :

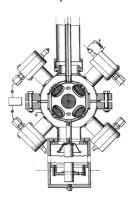
$$D-T : n\tau > 10^{20} s/m^3$$

- Haute température : $T>10^8 K$ permettant aux noyaux de surmonter la répulsion électrique mutuelle. A cette température : gaz ionisé appelé plasma
- Haute densité de particules : pour augmenter le taux de collision et le taux de réaction
- La durée du confinement : une fois les noyaux rapprochés, ils doivent rester suffisamment longtemps proche pour que la réaction de fusion aie lieu.

Critère de Lawson (1957)

Si n est la densité de particules et τ est la durée de confinement, une des conditions nécessaires pour que l'énergie libérée deviennent supérieure à l'énergie fournie au système :

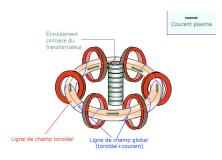
$$D-T : n\tau > 10^{20} s/m^3$$


4 D > 4 A > 4 E > 4 E > E 9 9 0

Confinement

Pour maintenir le plasma à une température élevée suffisante, il faut le confiner c'est-à-dire notamment l'éloigner de tout ce qui peut le refroidir

Confinement inertiel


Micro-explosions en utilisant des lasers d'une petite quantité de combustibles permettant d'atteindre des conditions de températures et de pression suffisantes

Confinement magnétique

Confinement du plasma avec un champ magnétique

Particules du plasma= ions déviés par un champ magnétique (Force de Lorentz)

Champ magnétique résultant est hélicoidal

Intérieur d'un tokamak

PERFORMANCE ACTUELLE

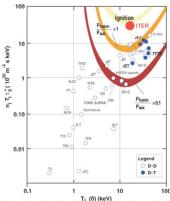


Illustration 7: « Triple produit » de fusion. Cette figure montre les performances des principaux tokamaks dans le monde. [Source: à partir de B. Unterberg, U. Samm, Overview of Tokamak Results, 2004]

- Tokamak (du russe chambre toroïdale avec bobines magnétiques). Exemples: JET (Joint European Torus), TFTR (Tokamak Fusion Test Reactor), ...
- Projet ITER : objectif est de créer les conditions nécessaires pour un réacteur nucléaire

Temps d'ignition : Temps atteint par le plasma tel qu'il devienne auto-entretenu (Mode 100 d'ignition $> n\tau$).

Merci de votre attention!

Sources bibliographiques

- Benson, *Physique*, Editions De Boeck, 2009.
- C. Etiévant, L'Energie Thermonucléaire, Presses Universitaires de France, 1962.
- Ch. Leclercq-Willain, Cours de Physique Nucléaire- 1ère Licence Sciences Physiques ULB.
- P. Radvanyi et M. Bordry, La radioactivité artificielle et son histoire, Editions du Seuil, 1984.
- R. Rosseel, La centrale nucléaire de Tihange, Electrabel, 1992.
- S.S.M. Wong, *Introductory Nuclear Physics*, Wiley-Interscience Publications, 1998.

Sources Internet

- www.laradioactivite.com
- www.futura-sciences.com