Dark Matter Searches with AMANDA and IceCube

Catherine De Clercq for the IceCube Collaboration
Vrije Universiteit Brussel

IDM 2008
Overview

1. Neutrinos from WIMP annihilations in Sun and Earth
2. The AMANDA and IceCube detectors
3. Results
4. Expected improvements
5. Summary and outlook
1. Neutrinos from WIMP annihilations in Sun and Earth

Indirect detection of Dark Matter
Neutralino annihilations in Sun \rightarrow neutrinos

- ρ_χ: neutralino density
- χ: neutralino
- σ_{scatt}: scattering cross section
- Γ_{capture}: capture cross section
- $\Gamma_{\text{annihilation}}$: annihilation cross section
- ν_μ: neutrino
- $\chi\chi \rightarrow q\bar{q}$: neutralino annihilation
- $\chi\chi \rightarrow l\bar{l}$: lepton pair
- W^\pm, Z, H: Standard Model particles
- $\nu_{\text{int.}}$: neutrino interaction
- v_{μ}: detected neutrino

Diagram showing the process from neutralino annihilation in the Sun to neutrino detection on Earth.
Neutralino models considered

- Assume MSSM with R-parity conservation
- Neutralino χ_0^1 (LSP) is popular CDM candidate: weakly interacting, stable, massive
- search for neutralinos accumulated in Sun or centre of Earth
- Consider 7 masses
- and 2 annihilation channels

\[50 \text{ GeV} < m(\chi_0) < 5000 \frac{\text{GeV}}{c^2} \]

\[
\begin{align*}
\chi\chi & \rightarrow W^+W^- \rightarrow \nu & \text{hard } E_\nu \text{ spectrum} \\
\chi\chi & \rightarrow b\bar{b} \rightarrow \nu & \text{soft } E_\nu \text{ spectrum}
\end{align*}
\]

Catherine De Clercq

Dark Matter in AMANDA & IceCube – IDM 2008
Signal simulation

- WIMPSIM generator (J. Edsjö) based on DarkSusy

- Used for:
 - Optimisation of filters, tuning of cuts
 - Calculation of selection efficiencies \rightarrow effective volume $V_{\text{eff}} - E_{\nu}$ dependent
 - Calculation of upper limits on neutralino annihilation rates if no signal found
Neutrino detection

Cherenkov light pattern emitted by the muon is registered by an array of photomultiplier tubes (PMT)

3 km ice layer

South Pole station

Photomultiplier tubes

Catherine De Clercq
Signal and background

B G
A few 1000 atmospheric neutrinos per year from northern hemisphere

signal
Max. a few neutrinos per year from WIMPs

B G
~10^9 atmospheric muons per year from southern hemisphere
2. The AMANDA and IceCube detectors
Catherine De Clercq

Dark Matter in AMANDA & IceCube – IDM 2008

• Bartol Research Inst., Delaware
• Anchorage University
• Pennsylvania State University
• UC Berkeley
• UC Irvine
• Clark-Atlanta University
• Univ. of Maryland
• University of Wisconsin-Madison
• University of Wisconsin-RiverFalls
• LBNL, Berkeley
• University of Kansas
• Southern Univ., Baton Rouge

• RWTH Aachen
• Humboldt Univ., Berlin
• Universität Dortmund
• MPIK Heidelberg
• Universität Mainz
• Universität Wuppertal
• DESY, Zeuthen

• Uppsala University
• Stockholm University

• EPF Lausanne

• University Utrecht

• Chiba University

• Universite Libre de Bruxelles
• Vrije Universiteit Brussel
• Université de Mons-Hainaut
• Universiteit Gent

• Univ. of Canterbury, Christchurch

IceCube Collaboration

~250 scientists – 30 groups
Amundsen Scott South Pole Station

IceCube observatory
Ø1km
At 1.5-2.5 km depth

Hot water drilling

AMANDA

Control room
IceTop

Air shower detector
threshold ~ 300 TeV

- 2004-2005: 1 String
- 2005-2006: 8 Strings
- 2006-2007: 13 Strings
- 2007-2008: 18 Strings

InIce

- 80 Strings, with
- 60 Optical Modules
- 17 m between Modules
- 125 m between Strings

IceCone status
March 2008

AMANDA

- 19 Strings
- 677 Modules

IceCube status
March 2008

Completion 2011

total of 40 Strings
3. Main results

Neutralinos in the Sun
Neutralinos in the centre of the Earth
Neutralinos in the Sun

- Use data with Sun below horizon (90°<θ<113.5°): March-September
- Near horizontal muon tracks

Several levels of filtering to remove atmospheric muon background

1 TeV WIMP, hard channel selection efficiency ≈ 20%

Data ≈ Σ(atm BG)

Atm. ν

Atm. µ
Neutralinos in the Sun

- Angular resolution
 - $[4^\circ-5^\circ] < 500\text{GeV AMANDA}$
 - $3^\circ \geq 500\text{GeV IceCube}$

- Results from:
 AMANDA 2003: 150.4 days
 IceCube 2007 (22 strings): 104.3 days

- Signal selection efficiency $\mathcal{O}(20\%)$ – dependent on E_ν
- BG from off-source data
- no evidence for signal in 250 days lifetime
Neutralinos in the Sun

- Test hypothesis that muons come from Sun
- \rightarrow 90% C.L. upper limit on signal strength μ_s
- \rightarrow ν to μ conversion rate

$$\Gamma_{\mu\nu} \leq \frac{\mu_s}{V_{eff} \cdot t}$$

Neutralino annihilation rate

Muon flux

$$\phi_\mu \left(E \geq E_{th} \right) = \frac{\Gamma_A}{4\pi R_\odot^2} \int_{E_{th}}^\infty dE_\mu \frac{dN_{\mu}}{dE_\mu}$$
Results solar neutralinos

- **AMANDA II 2003**
- **IceCube-22 2007**

- Upper limits on muon flux from neutralino annihilations in the Sun
- Excl. systematic errors: ~34%

- Compare to MSSM predictions & direct WIMP searches

- Excluded by CDMS + XENON10
 + allowed by CDMS + XENON10
Neutralinos in the centre of the Earth

- Near vertical upgoing muons

- AMANDA B10 1997-99 : 422 days
- AMANDA II 2001-03 : 361 days – focus on low masses

- BG estimated from simulation

- No signal found in ~800 days of livetime
Neutralinos in the centre of the Earth

- Upper limits on muon flux from neutralino annihilations in the centre of the Earth
- Incl. systematic errors:~36%

Excluded by CDMS + XENON10
+ allowed by CDMS + XENON10
4. Expected Improvements
Expected improvements

- Full AMANDA statistics 2001-06: factor $\sqrt{6}$ improvement

- IceCube: growing detector (IC80 in 2011) & more statistics improvement mainly at 500 GeV and above

- Addition of DeepCore: better sensitivity at 50-250 GeV
Expected improvements

- Full AMANDA statistics 2001-06: factor $\sqrt{6}$ improvement
- IceCube: growing detector (IC80 in 2011) & more statistics improvement mainly at 500 GeV and above
- Addition of DeepCore: better sensitivity at 50-250 GeV
DeepCore: optimised for GeV-TeV

- 6 extra strings with 60 DOMs at 7.5m spacing
- dense core of 13 strings = 514 PMTs
- At bottom of IceCube in very clear ice: $\lambda_{\text{scat}} \sim 40\text{m}$
- First string in 08-09
Access to Southern hemisphere:
use IceCube as veto against atmospheric μ from Southern hemisphere
5. Summary and outlook
Summary and outlook

- Indirect search was performed with AMANDA & IceCube for neutralinos in Sun and centre of Earth
- No evidence for signal
- Upper limits were set on possible muon fluxes – complementary with direct searches
- Improvements in sensitivity expected in coming years: more statistics, larger detector and addition of DeepCore