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Expected sensitivity & asymptotic distributions 
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Expected significance 

•  When planning an experiment, we want to quantify how 
sensitive we are to a potential discovery, e.g. by giving the 
median significance, assuming some non-zero signal 
strength µ’ 

•  For p-value, need f(q0|0) à find q0 for which p-values  
is e.g. 0.05 (=q0

disc) 

•  For sensitivity need f(q0|µ’) à find value of µ’ for which 
median q0 value is q0

disc 

Wouter Verkerke, NIKHEF, 3 



Expected (upper) limits 

•  Similarly, can construct expected (upper) limits.  

•  Allows to compare observed limits to what we would 
expected (based on the sensitivity of the experiment) 
–  Find value of µup for which background-only data would result in (e.g.) 

95% exclusion of µup. 

–  For given µ, use f(qµ|0) to find median value of qµ for background-only 
data.  

–  Find µup for which med[qµ-up|0] results in pµ-up of (e.g.) 0.05 
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Uncertainty bands on expected limits 

•  Upper limits are subject to the effect of statistical 
fluctuations in the data. Customary to quantify this 
effect with error bands on the expected limit 

•  Example for N·σ error bands on upper limit à 
Recalculate limits using med[qµ|µ’]±σ(qµ|µ’)  
to define value of qµ that should result in 5% p-value 
for f(qµ|µ)    
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Asymptotic distributions 

•  Using toy experiments  to calculate limits can be very 
computationally very expensive.  

•  Fortunately analytical ‘asymptotic’ forms exists for all 
needed test statistic distributions that are valid in the limit 
Nà∞ for f(qµ|µ’)  

•  For tµ, the profile likelihood ratio test statistic, defined as 
 
 
 
 
the asymptotic form for tµ for an assumed strength µ’ is 
 
 
 
 
(this is known as a “non-central χ2 distribution”) 
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Asymptotic distributions 

•  For f(tµ|µ) this simplifies to 
 
 
 
 
a simply χ2 distribution for one degree of freedom  

•  This we’d already seen  
this before when  
discussing the relation  
between MINOS  
intervals and  
confidence intervals  
based on tµ 
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Asymptotic forms of q0 and qµ 

•  Similarly, asymptotic forms exist for q0 and qµ 

•  For the discovery test statistic q0: full form 
 

 
 

•  Simplified form for µ=µ’=0 
 
 

•  Finally, one can also show that the discovery 
significance is asymptotically simply √q0,obs  
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δ function at zero  
(modeling cases with µ-hat<0)  

Chi-squared distribution 
for 1 degree of freedom 



 Asymptotic forms of q0 and qµ 

•  For the exclusion test statistic qµ: full form 

•  Simplified solution for µ=µ’ 
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δ function at zero  
(modeling cases with µ-hat<0)  

Chi-squared distribution 
for 1 degree of freedom 



Using asymptotic forms for µ≠µ’ 

•  Similar to case for tµ, asymptotic distributions for q0,qµ 
for µ≠µ’ depend on σ, which cannot be calculated 
analytically as it depends on the nuisance parameters 

•  But for these test statistics we can calculate this in a 
computationally inexpensive way using ‘Asimov 
Datasets’ 
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The Asimov dataset illustrated 
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f(x) 

Regular data set of 1000 events 

Asimov dataset  
(a weighted dataset 

with a sum of weights of 1000) 

NB: Asimov datasets can be trivially 
generated from any model in RooFit 
by adding the Asimov() argument 
to RooAbsPdf::generate() 



How to Asimov dataset helps 

•  With a test statistic evaluated on an Asimov dataset one 
can calculate directly (in the asymptotic limit) 

•  The variance σ2 needed for the full asymptotic 
expressions 
 
 
 
 
 

•  Note that with Asimov datasets, one can also trivially 
obtain the median p-values needed for the median 
expected limit and observation significance 
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Generally For discovery: f(q0|µ’) For limits: f(qµ|0) 

(Corresponding p-values  
trivially calculable from Z-values) 

Value of test statistics for Asimov dataset 



Asymptotic independence on nuisance parameters 

•  While full asymptotic forms depends nuisance 
parameters via σ, cases for µ≠µ’ do not 

 
•  This means that the distributions that are used to 

calculation observation p-values and limits are 
asymptotically independent of the value of the nuisance 
parameters. 

•  This is good à If distributions are truly independent of 
nuisance parameters, exact coverage is restored. 

•  Note that this does not hold for all test statistics, e.g.  
for t~

µ this is not the case (NB: t~
0 corresponds to 

Feldman Cousins) 
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How quickly is asymptotic behavior achieved? 

•  Investigate using on/off problem 

•  Discovery: p-value of bkg 

•  Asymptotic is good  
approximation to 5σ 
already at b=20! 
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How quickly is asymptotic behavior achieved? 

•  Exclusion limits: look at distributions for q1 test 
statistics for assumed hypothesis µ=0 and µ=1 
–  Already good behavior for s=6, b=9 
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Poisson(n|µs+b)Poisson(m|τ⋅b)   with τ=1 

Distribution 
defines 
p-value of 
µ=1 hypothesis 

Median of 
distribution 
defines expected 
exclusion sensitivity 



How quickly is asymptotic behavior achieved? 

•  Same, for s=10, b=10,            med[q0|1] for  
                                              s=1..20 and b=1...50 

•  For all asymptotic formulae and lots of details 
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Using asymptotical formulae in RooStats 

•  All asymptotic formulae are implemented in RooStats in 
the class AsymptoticCalculator 
–  Specify instead of FrequentistCalculator when you want to use 

asymptotic forms.  
 
 
 
 
 

•  Also available in  
StandardHypoTest 
InvDemo.C:  
Specify  
calculatorType=3  
(instead of 0) 
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The look-elsewhere effect 
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The ‘Look Elsewhere Effect’ 

•  Suppose a model for a mass distribution allows for a 
peak at mass m with with amplitude µ  

•  The data shows a bump at mass m0. 

•  How consistent is this with the no-bump hypothesis? 
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Calculating the p-value for a fixed mass 

•  If the mass m0 of the peak is known a priori, 
problem reduces to a likelihood ratio test statistic with 
one parameter of interest (µ)  

 

•  P-value for background-only hypothesis calculated as 
 
 
 
 
specifies probability to observe tfix or larger  
at the specified value of m0 

•  Expect that asymptotic form of f(tfix|0) can be used  
with a sufficiently large data sample. 
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Calculating the p-value for an unspecified mass 

•  If we don’t where to expect a peak in the distribution, 
we want the probability to find a peak at least as 
significant anywhere in the distribution: 
 

•  Calculate p-value as usual  

•  What about the asymptotic distribution for f(tfloat|0)? 
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Asymptotic distributions for tfix and tfloat 

•  For sufficiently large data sample tfix has chi-squared 
distribution for 1 degree of freedom 

•   For tfloat, one naively expected a chi-squared 
distribution with 2 degrees of freedom (µ,m) 

•  Obtaining f(tfloat|0) from toy experiments can be very 
expensive and difficult à Any other ways? 
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But observed distribution 
is very different for tfloat 
 
Wilks Theorem does not 
hold since parameter 
m is not defined in 
µ=0 model 
 
 



The look-elsewhere effect and the trials factor 

•  The fact that pfix and pfloat are different is called the  
‘look elsewhere effect’  

•  Probability to obtained observed result under 
background hypothesis increases if you look in a broad 
range instead of in a specific place 
 
 

•  The ratio pfloat/pfix is also called the ‘trials factor’ 

•  Generally, if we know the trials factor for a given 
experiment, we only need to calculate pfix to obtained 
pfloat 
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Approximating the trials factor 

•  Gross and Vitells  (arXiv 1005.1891) show that 

 where N(c) is the number of ‘upcrossings’ of  
 
 
 
 
 
in the examined range of m, where c=Zfix

2 is a threshold 
set by the significance Zfix corresponding to pfix 

•  With this approximate relation, can do fixed mass 
analysis and apply correction factor to get approximate 
p-value for floating mass scenario. 
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Counting upcrossings 

•  Illustration of upcrossings over threshold c of q(m) vs m 
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Here 3 upcrossings over threshold c=0.5 



Counting up-crossings at high Zfix 

•  Typically, we are interested at Zfloat when Zfix high, e.g. 
5σ.  

•  Would need <N(c=25)> for the correction factor, but 
this is very hard to obtain à Very few upcrossings at 
c=25 in background-only samples 

•  Can use another approximation 

•  Can estimate e.g. N(c=0.5) from background simulation  
(without need for high statistics), and approximate N
(c=25)  

•  Example:  Zfix = 5σ à pfix = 2.9 10-7 
               <N(0.5)>=8 à N(25) = 8·e-12.25 =3.8 10-5 
                       pfloat ≈ (pfix=2.9 10-7) + 1.4 10-5 = 3.9 10-5 
                      Zfloat≈ 3.9σ  (trials factor = 134) 
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Convergence of approximate trials factor 

•  Approximation of trials factor due to look-elsewhere-
effect works best at high Zfix 

•  Note: similar procedure can also be defined for N 
floating parameters. Replace <#upcrossings> by 
expectation value of Euler characteristic  
φ = #(disconnected components) - #(holes)  
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Summary of look-elsewhere-effect 

•  Look-Elsewhere-Effect occurs when testing a single 
model (e.g. SM) with multiple observations (different 
experimental selections, e.g. invariant mass regions) 

•  There is no LEE when considering exclusion limits  - we 
test specific models and say wether each is excluded 

•  Approximate LEE should be sufficient for most 
applications, and both pfloat and pfix should always be 
reported 
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(Higgs) Combinations 

Wouter Verkerke, NIKHEF, 29 



Combining multiple measurement for a limit 

•  For many types of (new) physics being investigated, 
there exist multiple experimental signatures sensitive to 
the same (new) physics parameters 

•  Example: Search for Standard Model Higgs boson is 
conducted in O(10) experimental signatures 
–  Hà ZZ à llll 

–  Hà WWà lqlq 

–  Hà γγ 

–  Hà bb  

•  Each search result is a likelihood L(µ,θ) that can be 
used to construct a confidence interval on µ=σ/σSM. 

•  How do you combine the information from all searches 
into a single (most powerful) confidence interval on µ? 
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Combining Higgs channels (and experiments) 

•  Procedure: define joint likelihood 

•  Correlations between θWW,θγγ etc and between 
θATLAS,θCMS requires careful consideration! 

•  The construction profile likelihood ratio test statistic 
from joint likelihood and proceed as usual 
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Combinations in RooFit/RooStats 
•  The workspace concept in RooFit greatly simplifies the 

practical aspects of such combined model building 
•  Each (analysis channel/experiment) builds its own 

probability model for each channel and exports it in a 
RooFit workspace  

•  Combined model is built by ‘just’ combining workspaces 
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Joint distributions in RooFit 

•  At the likelihood level a joint likelihood is constructed by 
simply multiplying the component likelihoods 

•  But for frequentist you also need the joint probability 
model (probability density function) to be able to 
sample toy experiments. How do you represent a joint 
measurement as the probability model 

•  A ‘simultaneous pdf’ of fA(x) and fB(y) can be defined as 

 f(x,y,i) = fA(x) if i=A 
              fB(y) if (i=B) 

•  From observation sets  x and y joint dataset is 
constructed D(x,y,i) that contains all values of x and y 
of the original datasets and a label i that is A or B, 
indicating the origin of each event   
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Example of constructing a joint model 
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•  An example constructing a joint model of class 
RooSimultaneous using the factory operator SIMUL 

Create example 
models for 

channels A,B 

Create index 
observable 

Join models 
and mapping each 

to a state of the  
index observable 



Example of constructing a joint dataset 

•  A joint dataset is made with similar ease 

•  Can choose between copying channel data [ Import() ] 
and linking to channel data [ Link() ] 
–  When linking the joint dataset is just a ‘virtual layer’ that redirects 

to the original datasets 
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Channel datasets 

Joint dataset 

Index observable 
(as already defined in the workspace) 

Associate each dataset with 
an index observable label 



Tools exist to import models from other workspaces 

•  For practical combinations, channel models will be 
provided in workspaces in separate files 

•  Convenient tools exist to import such models from file-
based workspaces into your own 
 

•  Specifying the ‘top node’ of a model will automatically 
import all components 
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    w.importFromFile(“atlas_higgs_ZZ_125.root:wspace:hzz_top_model”,…) ; 
 

filename workspace 
object 
name 

model 
object 
name 



Tools exist to import models from other workspaces 

•  Option exist to rename variable, pdf component names, 
and dataset names to avoid unintended clashes 

•  NB: When constructing joint models in RooFit: 
  
same parameter name = same parameter 

 i.e. when a parameter ‘mu’ already exists in the workspace and  
new model is imported that has its own copy of mu, it will be linked to 
the existing copy, so that all models in the same workspace share the 
same mu 

•  In contrast: when pdf (components) and functions have 
the same name, this is refused by default, as it is likely a 
mistake (there is switch to override if this is intentional).  

•  Tools exist for comprehensive renaming upon import to 
avoid unintended clashes 
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   w.import(atlasHiggsZZ, 
            RenameAllVariablesExcept(“mHiggs”,”aHZZ”), 
            RenameVariable(“HiggsXS”,”mu”) ; 
 



Things to worry about in combinations 

•  Just focused on technical aspects of joint model building. 

•  Construction of joint models present vast array of difficult 
questions to answer in terms of common nuisance 
parameters between channels and experiments 
–  Is the jet-energy-scale between HàZZ and HàWW correlated? 

–  Is the jet-energy-scale between ATLAS and CMS correlated? 

–  Is the W+jets cross-section (background) correlated between HàWW
(lqlq) and HàZZ(llqq)  

•  Remember that frequentist use of likelihood treats all 
contributions on similar footing:  
main measurement and subsidiary measurements. 

•  E.g is it OK if main measurement of HàZZ constrains 
nuisance parameter for JES that is also used in HàWW 
more than the subsidiary measurement that was 
introduced for HàWW? 
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Putting it all together – The Higgs search as example 

•  Step 1 – Event selection 
–  Defined separately for each Higgs decay channel (gg,WW,ZZ,ττ) 

–  Quantify SM and Higgs expected distributions for each channel 
(the latter for a large range of mHiggs hypotheses) 



Each channel is sensitive to a different range of mH 

•  Can execute limit-setting  
procedure for each channel  
separately 

•  Limit on µ=σ/σSM always 
calculated at fixed mH 

–  Trials factor will be discussed later 

•  For each mH calculate 
–  Observed limit (using CLS) 

–  Expected limits and 1,2σ bands 

–  p-value of background hypothesis 
(will show later) 
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Then combine all channels 

•  Different channels contribute in different ranges of mH... 
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How to read the upper limit plot 
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•  For each value of mH, find the CLS upper limit on µ 
•  For each mH, determine distribution of upper limits 

µup one would obtain under the hypothesis µ=0 
–  The dashed curve is the median of µup and the green(yellow) and give 

the ±1σ(2σ) regions of this distribution 

•  Range(s) of mH for which µup < 1 is region where we  
expect to be able to exclude SM Higgs boson (at µ=1) 

•  Range(s) of mH where observed limit is <1 is what we 
actually exclude 



How to read the p0 plot 
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•  The “local” p0 means the p-value for the background-
only hypothesis obtained from the test of µ=0 at each 
individual mH, without any correction for the LEE 

•  The expected curve gives the median p0 under the 
assumption of the SM Higgs (µ=1) at high mH 

–  Low expected p0 means high observation sensitivity,  
(not higher probability of the Higgs having this mass) 



How to read the “blue band” plot 
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•  On the plot of µ-hat (fit to σ/σSM) versus mH,  
the blue band is defined by 

“Minos error” (≈ 68% C.L.) 

No signal 

SM signal 
strength 



The Look Elsewhere Effect 

•  Indications of the global p-value (correction for the 
look-elsewhere effect), if given is calculated from the 
“upcrossing counting method” 
–  Keep in mind that this approximation works best for high Zlocal 

–  Example below for preliminary ATLAS+CMS Higgs combination 
performed in Fall 2011 
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The end – Recommended reading 
•  Easy 

–  R. Barlow, Statistics: A Guide to the Use of Statistical Methods 
in the Physical Sciences, Wiley, 1989 

–  L. Lyons, Statistics for Nuclear and Particle Physics, Cambridge 
University Press 

–  Philip R. Bevington and D.Keith Robinson, Data Reduction and 
Error Analysis for the Physical Sciences  
 
 

•  Intermediate 
–  Glen Cowan, Statistical Data Analysis (Solid foundation for 

HEP) 
–  Frederick James, Statistical Methods in Experimental Physics, 

World Scientific, 2006. (This is the second edition of the 
influential 1971 book by Eadie et al., has more advanced 
theory, many examples) 
 

•  Advanced 
–  A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of 

Statistics, Vol. 2A, 6th edition, 1999; and earlier editions of this 
“Kendall and Stuart” series. (Authoritative on classical 
frequentist statistics) 
 

•  Recent papers (covered in these lectures) 
–  Asymptotic Distributions 

 
 

–  Look-Elsewhere-Effect 
Wouter Verkerke, NIKHEF  arXiv 1005.1891 
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Exercise A 

•  Repeat the limit setting exercises of module 3 with the 
Asymptotic Calculator instead of the Frequentist 
calculator (use calculatorType=3) and compare the 
results.  
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