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Nuisance parameters: what are they and what do you do with them? 

•  1 – Definition of nuisance parameters 
–  A nuisance parameter is any parameter of the model that is not a 

parameter-of-interest (for physics). 
•  Example: for Higgs discovery N(higgs) is of interest, everything else is nuisance 

•  2 – Introduction of nuisance parameters in Likelihood 
–  Sometimes nuisance parameter arise naturally in the likelihood.  

–  Systematic uncertainties always introduce nuisance parameters, 
but explicit parameterization not always obvious (e.g. how to 
parameterize effect of Pythia-vs-Herwig?) 

•  3 – Treatment of nuisance parameters in inference 
–  Each of the three main classes of constructing intervals (Bayesian, 

likelihood ratio, Neyman confidence intervals) has a different way 
to incorporate the uncertainty on the nuisance parameters in the 
parameters of interest.  
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Systematic uncertainties 

•  Common source of systematic uncertainty in particle 
physics are 

•  Detector systematics 
–  Jet energy scale uncertainty 

–  Flavor tagging efficient / mistag rate uncertainty 

–  Jet-to electron fake rates (reconstruction mistakes) 

•  Theory systematics 
–  Parton showering model uncertainty (e.g. Pythia vs Herwig) 

–  Cross-section uncertainties 

–  Parton densitity function uncertainties  

•  Simulation statistics 
–  Finite size of simulated event samples model signal and 

background distributions 
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Systematic uncertainties – the naïve approach 

•  Naïve approach to incorporating systematic 
uncertainties in a measurement 

•  Measure parameter of interest (e.g ML fit using L(x|µ)) 

•  Example: include a 5% Jet-Energy-Scale systematic 
–  Construct alternate model LJESup(x|µ) that is built with signal and 

background models reflecting a JES that is moved up by 5% and 
use that measure µJESup 

–  Construct alternate model LJESdn(x|µ) that is built with signal and 
background models reflecting a JES that is down up by 5% and 
use that to measure µJESdn 

–  Calculate uncertainty due to JES as σ(µ)JES  = (µJESup – µJESdn)/2 

•  Repeat for each systematic uncertainty, then add all 
uncertainties in quadrature 
–  σ(µ)2 = σ(µ)stat

2 + σ(µ)systA
2 + σ(µ)statB

2 ...  
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Issues with the naïve approach 

•  All systematic uncertainties are treated as uncorrelated 

•  It only works for measurements, not for hypothesis 
testing or limit setting 
 
 

•  To incorporate effect of systematic uncertainties in 
hypothesis testing, must include it in the likelihood  

Wouter Verkerke, NIKHEF, 5 



What are nuisance parameters? 

•  In general, our mode of the data is not perfect 

•  Can improve modeling by including  
additional adjustable parameters 

•  Nuisance parameters can be used to model systematic 
uncertainties: Some point in the parameter space of the 
enlarged model should be “true” 

•  Presence of nuisance parameters decreases the sensitivity 
of the analysis of the parameter(s) of interest 
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Introducing nuisance parameter in the likelihood 
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Introducing nuisance parameters in the likelihood 

•  Any parameter in a likelihood (or probability density 
function) that is not a parameter-of-interest is a nuisance 
parameter 

•  Example: Gaussian+Exponential model from yesterdays 
exercises: parameter-of-interest is signal yield 

•  If slope of exponential, width or mean are introduced as 
floating parameters 
these are in fact 
‘nuisance parameters’ 
–  Their introduction makes 

the model more correct 
(assuming true values of  
width, slope and mean  
were not known) 

–  Their introduction allows 
to model to assume more 
correct values for these 
NPs, but weakens the  
sensitivity to the POI 
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Subsidiary measurements 

•  In the preceding example, the likelihood model  had – 
with sufficient statistics – sensitivity to constrain the 
nuisance parameters from the data  

•  This is not always possible à  
Introduce a ‘subsidiary measurement’ in the likelihood 
that describes external knowledge 
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Error band visualize 
approx 68% uncertainty 
on model due to measured 
uncertainty on slope 



A simple example: a counting experiment 

•  Lets revisit the Poisson counting experiment 

•  In yesterdays limit setting exercise we have assumed b 
is known and fixed à L(s) has no nuisance parameters 
–  b is not a parameter in the statistical sense, as it is fixed 

•  Now lets assume b is not perfectly known à introduce it 
as nuisance parameter. Probability function P(N|s+b) is 
the same, but likelihood is now L(s,b) 

•  Note that in this case we cannot constrain b and s from 
the same data: increasing b by one and decreasing s by 
one results in the same likelihood:  
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Introducing a subsidiary measurement 

•  Suppose we can measure the background rate in a 
control region: 

•  If signal region and control region have the same size 
then τ=1, otherwise the τ factor scales b such that it 
respresents the estimate of b for the signal region 
–  The scale factor τ is assumed to be known and fixed 

•  Now we have two measurement N and Nctl,  
can write joint model P(n,nctl|s,b) 
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Joint model can measure both s and b 

•  Model: Poisson(N|s+b)Poisson(Nctl|τ⋅b), τ=3 (exact) 
 

•  Visualization of Likelihood for N=10,Nctl=10 
 
L(s,b) = Poisson(10|s+b)Poisson(10|3·b) 
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Note on the Poisson counting model 

•  Model: Poisson(N|s+b)Poisson(Nctl|τ⋅b), τ=3 is the simplest 
model for discovery and limit setting for new physics 

•  In the (HEP) statistics literature it is  
called the “on/off” problem 

•  Hypothetical case for “Exotic” discovery 
–  Define fancy selection sensitive to Exotic physics (of arbitrary complexity). 

Calculate predicted event yields in data and simulation:  
–  Simulation for SM – Predicts 3 events 
–  Simulation for SM+Exo– Predicts 3+6 events à 9 events in total 
–  Observed event count in data: 8 events 

•  How do you conclude (or not) that you’ve discovered 
something? 
–  You expect 9 events (with NP), you see 8, looks promising 

•  Can solve this with the on/off model.  
•  However: estimate of background and its uncertainty is 

crucial.  
–  For realistic scenario unlikely to be a simple counting estimate, but also 

need to account for effect of detector/theory systematics 
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Generalizing subsidiary measurements 

•  Q: How to formulate a likelihood if b is estimated from theory 
–  Estimate for b is 5 ± 2 from simulation, the uncertainty originates from a 

theory cross-section uncertainty 
 

•  A: Can formulate a subsidiary measurement b=5 ± 2 that 
results in a constraint on nuisance parameter b 

•  Given an observation of N=10 from the data our 
full observation (including information from the subsidiary 
measurement) is now 
 
 
 

•  Goal achieved: theory syst. uncertainty included in likelihood 
as nuisance parameters 

•  Note similarity in formulation to original on/off problem 

)2)~(,|~()|(),|~,( =+= bbbGaussianbsNPoissonbsbNL σ
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Nuisance parameters affecting distributions 

•  Goal is to model all systematic uncertainties as nuisance 
parameters. Theory uncertainty in counting was easy 

•  How to model systematic uncertainties that affect 
distributions? 

•  Example: How model effect of a Jet-Energy-Scale 
uncertainty affecting an invariant mass distribution? 

•  Preamble:  
–  Most LHC physics analysis using shape information construct 

complex observables sensitive to the parameter-of-interest for 
which no simple analytical model exist to describe these 

–  For the signal component this is sometimes still possible, but 
background shapes are generally very difficult 

–  Solution: Represent signal and background distributions with 
histograms obtained from the full physics/detector simulation 
chain of experiments.   
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Template models 

•  Probability models based on  
such histograms are commonly  
called ‘template models’ 
–  Example template model  

with a signal and background  
component  

•  Advantage: no effort needed to construct analytical shape 
to describe signal and background components 

•  Issue 1: If simulation statistics are low compare to data 
this introduces a (systematic) uncertainty on its own 

•  Issue 2: Rigid model à Need to introduce nuisance 
parameters that allow sufficient flexibility to so that it can 
cover shape of ‘true’ (but unknown) model 

•  Note that both issues also occur in practice for parametric 
models that are based on physics/detector simulation 
samples! 
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Introducing flexibility in template models 

•  Suppose we have three template for signal representing 
–  The signal distribution at the nominal Jet-Energy Scale 

–  The signal distribution at JES = nominal * 105% 

–  The signal distribution at JES = nominal * 95% 

•  How can we make a flexible model L(x|θJES) from this? 
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Solution: template morphing 

•  Construct a model that interpolates (bin-by-bin) 
between the histograms introducing a newly introduced 
nuisance parameter  
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Simplest version: vertical interpolation 

•  Note template morphing is not a uniquely defined 
problem. Several practical solutions exist.  

•  The simplest (conceptually and practically) is vertical 
interpolation bin-by-bin 

RooFit model: class RooStats::PiecewiseInterpolation 



Other morphing variations 

•  ‘Horizontal morphing’: interpolation cumulative 
distributions rather than pdfs 
–  More suitable for shifting (narrow) distributions 

–  Computationally expensive  
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•  ‘Moment morphing’: transform models with linear 
transformation in observables that adjust 1st and 2nd 
moment   
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Other morphing variations 

RooFit model: class RooMomentMorph 



Comparison of morphing algorithms 
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Constructing a joint model for a shape systematic 

•  Remember joint model for theory systematic 

•  Now we can put together a similar form for  
a shape systematic 
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Nuisance parameters in pull form 

•  Nuisance parameters in morphing are conventionally 
formulated in pull form 

•  So that 
–  The subsidiary measurement is always zero 

–  α=0 corresponds to the nominal configuration (θ=θhat) 

–  α=+1 corresponds to ‘one sigma up’ (θ=θhat+σ(θ)) 

–  α=-1 corresponds to ‘one sigma down’ (θ=θhat-σ(θ)) 
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Symmetry between subsidiary and mean measurement 

•  Note again that main measurement and subsidiary 
measurement are treated symmetrically in the 
likelihood 
 

•  This also means that both main measurement and the 
main measurement can (in principle) constrain αJES! 
–  I.e. with sufficient statistics the main measurement can (in 

principle) provide a strongly constraint on a systematic 
uncertainty than subsidiary measurement 

–  This is in principle OK, but you should be extra careful examining 
the precise assumption made in the main model to confirm that 
this improved inference is legitimate 
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Choosing distributions for subsidiary measurements 

•  What are good choices for the distribution of the 
subsidiary measurements that model your systematic 
uncertainties 

•  Have see two cases so far: 
–  On/Off problem: a Poisson model 

 
 

–  Morphing shape systematic: a Gaussian model 

•  What are good choices? 
–  If the subsidiary measurement describes (the equivalent) of a 

counting experiment, Poisson is good choice 

–  If subsidiary measurement was a high-statistics measurement, or 
a addition of many systematic effects in quadrature, a Gaussian 
can be a good choice (Central Limit Theorem) 
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Choosing distributions for subsidiary measurements 

•  For theory uncertainties à Not always clear what to do 

•  Warning on large uncertainties from subsidiary 
measurements on background rates 
–  If a nuisance parameter is a background rate and it has a large 

uncertainty, a Gaussian shape may allow for a negative 
background rate: 
 

–  Example 

–  68% Gaussian interval only contains values with b>0, but 95% 
Gaussian interval also includes b=1 

–  Consider to use a Poisson shape (always positive), or alternatively 
a logNormal distribution 
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Gamma and logNormal distributions 
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Nuisance parameters for template statistics? 

•  When template statistics are comparable (or smaller) to 
that of the observed data, additional source of 
uncertainty à Introduce these as nuisance parameters 

•  In principle: for every bin of every template one 
nuisance parameter. Subsidiary measurement for each 

Wouter Verkerke, NIKHEF, 29 

∏
=

=
n

i
bibibsisissns yPyPyyL

0
,,,,,,0 )|~()|~()~,...,~( θθ

Signal simulation  
event count for bin i 

Background simulation  
event count for bin i 



•  With 10-100 bins per template and multiple templates, 
could end up with hundreds of nuisance parameters for 
template statistics  
à Numeric implementation of full statistical treatment 
becomes intractable 

•  Solution 1 – ‘Beeston Barlow’.  
–  Beeston and Barlow have shown that minimization of likelihood for 

template statistics can be factorized for each bin so that they can 
be performed recursively. 

–  Instead minimizing likelihood w.r.t. Ntempl*Nbin + Nother parameters, 
do Nbin minimizations of Ntempl parameters, plus one minimization 
of Nother  

–  NB: This procedure is implemented in ROOT class TFractionFitter 

Wouter Verkerke, NIKHEF, 30 

Nuisance parameters for template statistics? 



Nuisance parameters for template statistics? 

•  Solution 2 – ‘Beeston Barlow light’ 
–  Approximate Beeston-Barlow solution (which is exact) by 

modeling only the effect of the total statistics in each bin 

–  Requires Nbin minimization of one parameter  
à Can be solved analytically 
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The effect of template statistics 

•  Roughly speaking the effect of template statistics 
becomes important when Ntempl< 10x Ndata 
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Tools to build parameterized likelihood models 

•  Note that RooStats comes with ‘histfactory’ a tool to 
construct parameterized template models from an XML 
specification and a set of input histograms 
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What are nuisance parameters? 

•  In general, our mode of the data is not perfect 

•  Can improve modeling by including  
additional adjustable parameters 

•  Nuisance parameters can be used to model systematic 
uncertainties: Some point in the parameter space of 
the enlarged model should be “true” 

•  Presence of nuisance parameters decreases the sensitivity 
of the analysis of the parameter(s) of interest 
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Summary on nuisance parameters 

•  Systematic uncertainties can only be properly accounted 
for in hypothesis testing if their effect is modeling in the 
likelihood 

•  Nuisance parameters introduce flexibility in models so 
that they can (in theory) assume the true distribution 
for some value of these parameters 

•  All systematic uncertainties can (in principle) be 
represented by nuisance parameters 
–  Rate systematics can be introduced as a multiplicative factor 
–  Shape systematics can be implemented with template morphing 

techniques 
–  MC statistics systematics can be implemented with the Beeston-

Barlow (light) techniques 

•  For many nuisance parameters it is common to 
introduce a subsidiary measurement that constrains the 
systematic uncertainty according to its specification  
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Treatment of nuisance parameters in limits 
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Hypothesis testing with nuisance parameters 

•  Yesterday we covered frequentist hypothesis testing 
and interval calculation using likelihood ratios based on 
a likelihood with a single parameter (of interest) L(µ) 
–  Result is p-value on hypothesis with given µ value, or 

–  Result is a confidence interval [µ-,µ+] with values of µ for which 
p-value is at or above a certain level (the confidence level) 

•  How do you do this with a likelihood L(µ,θ) where θ is a 
nuisance parameter? 
–  With a test statistics qµ, we calculate p-value for hypothesis θ as  

•  But what values of µ do we use for f(qµ|µ,θ)? 
Fundamentally, we want to reject θ only if p<α for all θ 
à Exact confidence interval 
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Hypothesis testing with nuisance parameters 

•  The goal is that the parameter of interest should be 
covered at the stated confidence for every value of 
the nuisance parameter 

•  if there is any value of the nuisance parameter which 
makes the data consistent with the parameter of 
interest, that parameter point should be considered:  
–  e.g. don’t claim discovery if any background scenario  

is compatible with data 
 

•  But: technically very challenging and significant 
problems with over-coverage 
–  Example: how broadly should ‘any background scenario’ be 

defined?  Should we include background scenarios that are clearly 
incompatible with the observed data? 
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Example of over-coverage 

•  The 1958 thought expt of David R. Cox focused the issue: 
–  Your procedure for weighing an object consists of flipping a coin to 

decide whether to use a weighing machine with a 10% error or one 
with a 1% error; and then measuring the weight. 

•  Then “surely” the error you quote for your measurement 
should reflect which weighing machine you actually used, 
and not the average error of the “whole space” of all 
measurements! 

•  But this is not how the classical frequentist confidence 
interval works! 
–  Suppose weight=100, coin=‘1% error’ Can you exclude weight=90 at 

95% C.L?  
–  No: because for ‘coin=10% error‘ weight=90 cannot be excluded at 

95% C.L. 

•  Solution: conditioning on observed data will make result 
more relevant (at expense of exact frequentist coverage) 
–  Restricting whole space of probabilities to ‘coin=1% error’ only if that 

is observed allows to exclude weight=90 at 95% C.L.  



The profile likelihood construct as compromise 

•  For LHC the following prescription is used:  
 
Given L(µ,θ) 
 
perform hypothesis test for each value of µ,  
 
assuming values of nuisance parameter(s) θ that best 
fit the data under the hypothesis µ 

•  Introduce the following notation 
 
 

•  The resulting confidence interval will have exact 
coverage for the points 
–  Elsewhere it may overcover or undercover (but this can be 

checked) 
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The profile likelihood ratio 

•  With this prescription we can construct the profile 
likelihood ratio as test statistic 

•  NB: value profile likelihood ratio does not depend on θ  
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Profiling illustration with one nuisance parameter 
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Dealing with nuisance parameters in Likelihood ratio intervals 
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Setting limits with t1 using profile likelihood ratio 

•  Value of t1 from data is now the ‘measurement’ 

•  Distribution of t1 = f(t1|µ=1) not calculable  
à But can obtain distribution from toy MC approach 
à Asymptotic form exists for Nà∞ 
 
 
 
 
 
 
 
 
 
 

•  Limit on µ (w/o CLS) : Find tµ for which 
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PLR Confidence interval vs MINOS 

tµ(x,µ) 
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Measurement = tµ(xobs,µ)  
is now a function of µ 

Asymptotically, 
distribution is identical 
for all µ 

Asymptotically, 
confidence  
interval  is  
profile likelihood 
ratio interval 



Link between MINOS errors and profile likelihood 

 
 
 
 
 
 
 
 

•  Note that MINOS algorithm in  
MINUIT gives same errors as  
Profile Likelihood Ratio 
–  MINOS errors is bounding box  

around λ(s) contour 

–  Profile Likelihood = Likelihood 
minimized w.r.t. all nuisance  
parameters 
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Summary on NPs in frequentist intervals 

•  Exact confidence intervals are difficult with nuisance 
parameters 
–  Interval should cover for any value of nuisance parameters 

–  Technically difficult and significant overcoverage common 

•  LHC solution à Guaranteed coverage at measured 
values of nuisance parameters only 

•  Technically replace likelihood ratio with profile likelihood 
ratio 
–  Computationally more intensive (need to minimize likelihood w.r.t 

all nuisance parameters for each evaluation of the test statistic), 
but still very tractable 

•  Asymptotically confidence intervals constructed with 
profile likelihood ratio test statistics correspond to 
(MINOS) likelihood ratio intervals  
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Bayesian treatment of nuisance parameters 
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Dealing with nuisance parameters in Bayesian intervals 

•  For comparison, will briefly discuss Bayesian treatment 
of nuisance parameters 

•  Reminder: definition of Bayesian intervals 

                 P(µ) ∝ L(x0|µ) π(µ),  
where: 

–  P(µ) = posterior pdf for µ, given the results of this experiment 

–  L(x0|µ) = Likelihood L(µ) from the experiment 

–  π(µ) = prior pdf for µ,  

•  If you have nuisance parameters θ, 
equation becomes 

•   P(µ,θ) ∝ L(x0|µ,θ) π(µ) π(θ)  
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Dealing with nuisance parameters in Bayesian intervals 

•  Elimination of nuisance parameters in Bayesian interval: 
Integrate over the full subspace of all nuisance 
parameters;  
 
 
 

•  You are left with posterior pdf for µ 
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Dealing with nuisance parameters in Bayesian intervals 

•  Choosing priors – generally a difficult issue. For nuisance 
parameter representing systematic uncertainties can exploit 
information from subsidiary measurement  
–  Reminder: frequentist procedure treats main and subsidiary measurement on 

equal footing, e.g. 
 
  

•  Equivalent Bayesian formulation 
 
 

–  Note: The posterior of a Poisson is a Gamma 

•  Subsidiary measurement not treated on equal footing with main 
measurement: once the prior is formulated, the fact that it was 
a measurement is ‘forgotten’, i.e. data is N, not (N,Nctl) 
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Hybrid frequentist Bayesian approach 

•  Use marginalized likelihood to described the data 

•  Then construct test statistic based on Lm(µ)  
to construct a confidence interval  
–  It does not represent what the data distribution would be if we 

really repeated the experiment, since the subsidiary 
measurements θ~ are not repeated 

–  But it does effectively incorporate the uncertainty due to θ in the 
model 

•  Procedure sometimes referred to as ‘Cousins-Highland’ 
or ‘ZN’ 
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How much do answers differ between methods? 

These slide discuss the earlier 
shown problem: 
 
Poisson(Nsig|s+b) ⋅ Poisson(Nctl|τ⋅b) 
 
NB: This is one of the very few 
problems with nuisance parameters 
with can be exactly calculation 



Recent comparisons results from PhyStat 2007 
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RooStats - Software for hypothesis testing and 
limit calculation 

Wouter Verkerke, NIKHEF, 55 



RooStats Project – Overview 

•  Goals:  
–  Standardize interface for major statistical procedures so that they 

can work on an arbitrary RooFit model & dataset and handle many 
parameters of interest and nuisance parameters. 

–  Implement most accepted techniques from Frequentist, Bayesian, 
and Likelihood-based approaches 

–  Provide utilities to perform combined measurements 
 

•  Design: 
–  Essentially all methods start with the basic probability density 

function or likelihood function. Building a good model is the hard 
part.  Want to re-use it for multiple methods à Use RooFit to 
construct models 

–  Build series of tools that perform statistical procedures on RooFit 
models 

Wouter Verkerke, NIKHEF  



The RooStats project 
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RooFit/RooStats Project – Structure  

•  RooFit (data modeling)  
–  Data modeling language (pdfs and likelihoods). 

Scales to arbitrary complexity 
–  Support for efficient integration, toy MC generation  
–  Workspace  

•  Persistent container for data models 
•  Completely self-contained (including custom code) 
•  Complete introspection and access to components 

–  Workspace factory provides easy scripting language to populate 
the workspace 
 

•  RooStats (limits, interval calculators & utilities)  
–  Profile Likelihood calculator 
–  Neyman construction (FC) 
–  Bayesian calculator (BAT & native MCMC) 
–  Utilities (combinations, construct pdfs corresponding to standard 

number counting problems) 

Wouter Verkerke, NIKHEF  



RooStats Project – Example  

•  Create a model - Example 

Wouter Verkerke, NIKHEF  

RooWorkspace* w = new RooWorkspace(“w”);  
w->factory(“Poisson::P(obs[150,0,300],  
                      sum::n(s[50,0,120]*ratioSigEff[1.,0,2.], 
                             b[100,0,300]*ratioBkgEff[1.,0.,2.]))"); 
w->factory("PROD::PC(P, Gaussian::sigCon(ratioSigEff,1,0.05),  
                        Gaussian::bkgCon(ratioBkgEff,1,0.1))");  

)1.0,1,()05.0,1,()|( bsbs rGaussrGaussrbrsxPoisson ⋅⋅⋅+⋅

RooWorkspace(w) w contents 
 
variables 
--------- 
(b,obs,ratioBkgEff,ratioSigEff,s) 
 
p.d.f.s 
------- 
RooProdPdf::PC[ P * sigCon * bkgCon ] = 0.0325554 
  RooPoisson::P[ x=obs mean=countingModel_2 ] = 0.0325554 
    RooAddition::n[ s * ratioSigEff + b * ratioBkgEff ] = 150 
  RooGaussian::sigCon[ x=ratioSigEff mean=1 sigma=0.05 ] = 1 
  RooGaussian::bkgCon[ x=ratioBkgEff mean=1 sigma=0.1 ] = 1 

Create workspace with above model (using factory) 

Contents of workspace from above operation 



RooStats Project – Example  

•  Confidence intervals calculated with model 
–  Profile  

likelihood  

 

–  Feldman 
Cousins 
 
 
 

 
–  Bayesian  

(MCMC) 

Wouter Verkerke, NIKHEF  

ProfileLikelihoodCalculator plc;  
plc.SetPdf(w::PC);  
plc.SetData(data); // contains [obs=160] 
plc.SetParameters(w::s);  
plc.SetTestSize(.1);  
ConfInterval* lrint = plc.GetInterval(); // that was easy.  

FeldmanCousins fc;  
fc.SetPdf(w::PC);  
fc.SetData(data); fc.SetParameters(w::s);  
fc.UseAdaptiveSampling(true);  
fc.FluctuateNumDataEntries(false);  
fc.SetNBins(100); // number of points to test per parameter  
fc.SetTestSize(.1);  
ConfInterval* fcint = fc.GetInterval(); // that was easy.  

UniformProposal up;  
MCMCCalculator mc;  
mc.SetPdf(w::PC);  
mc.SetData(data);  mc.SetParameters(s);  
mc.SetProposalFunction(up);  
mc.SetNumIters(100000); // steps in the chain  
mc.SetTestSize(.1); // 90% CL  
mc.SetNumBins(50); // used in posterior histogram  
mc.SetNumBurnInSteps(40);  
ConfInterval* mcmcint = mc.GetInterval(); 



Interfacing RooFit to RooStats à ModelConfig 

•  RooFit provides a very flexible toolkit for model building, 
but a RooFit pdf does not unambiguously specify a 
statistical model 
–  No distinction is made between parameters and observables and 

conditional onservables 

–  No distinction is made between nuisance parameters and 
parameters of interest 

–  (Bayesian) Priors are not part of any model 

•  Add a new class that specifies all these items: 
RooStats::ModelConfig. 

•  An instance of class ModelConfig can be stored inside a 
workspace so that a workspace with a ModelConfig 
inside presents a complete and self-documenting 
description of a statistical model that can be analyzed 
by RooStats tools  
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The ModelConfig and Workspace Interface 
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An example with ModelConfig 
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RooStats: interfaces for statistical test and results 
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Confidence Intervals 
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Tools that calculate confidence intervals 
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Hypothesis tests results 
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Hypothesis test calculators 
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Combined calculators (of hypo tests and intervals) 
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Concrete implementations of calculators  

Wouter Verkerke, NIKHEF, 70 



Concrete implementations of intervals 

Wouter Verkerke, NIKHEF, 71 



List of calculator tools 
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Putting it together in RooStats 
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An example problem 
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Creating the model 
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Using the profile likelihood calculator 
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Example using the Feldman Cousins calculator 
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Example using BayesianCalculator 
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Example using Markov Chain Bayesian Calculator 

Wouter Verkerke, NIKHEF, 79 



Hypothesis test inversion 
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Generic interval calculation 

•  RooStats provide a flexible framework to  
do Neyman construction in a modular way in software 

•  Classes that construct test statistic 
from a Workspace 
–  ProfileLikelihoodRatio (LHC) 

–  RatioOfProfiledLikelihoods (Tevatron) 

–  SimpleLikelihoodRatio 

–  (your own) 

•  Universal test statistic sampler 
class that maps the confidence belt 
–  With support for PROOF(lite) parallelization 

•  A Class to invert hypothesis tests in  
belt into a confidence interval 

•  A standard script that drives the 
whole procedure Wouter Verkerke, NIKHEF, 81 



An example driver script 

Tool to calculate p-values for a given hypothesis 

Tool to construct  
interval from  
hypo test results 

The test statistic 
to be used for 
the calculation 
of p-values  

)(µµ ʹ′q

µµ

µ

µ dqqf
obsq
∫
∞

ʹ′
,

)|(

)|( µµ ʹ′qf
Tool to construct 
test statistic 
distribution 



Example output of hypothesis test inversion 

•  Hypothesis test calculator computes p-value for each 
value of µ 

Wouter Verkerke, NIKHEF, 83 

HypoTest result (p-value) at given µ (here µ=1) 

One-sided in interval  
(upper limit) at 95% C.L. 

Two-sided in interval  
at 68% C.L. 



Detailed output also possible 

•  Example: distributions of test statistic qµ 
for toys generated with µgen=0 and µgen=µ 
for each scanned point of µ  

Wouter Verkerke, NIKHEF, 84 



Additional useful information CLS, expected limits 

•  Can also show in p-value vs µ scan plots 
–  Observed CLS (= pµ/(1-p0)) 

–  Observed p0  

–  Expected CLS (median and 1,2σ bands)  

Wouter Verkerke, NIKHEF, 85 



The ‘standard’ driver script 
•  Input information needed 

–  Input workspace (file name and workspace name) 
–  Name of ModelConfig object to be used in workspace 

•  Specifies S+B model, B model (if not S+B with µ=0), POI, nuisance params etc 

–  Name of observed dataset in workspace 

•  Statistics options 
–  Calculator type (Frequentist, Hybrid, Asymptotic) 
–  Test statistic (ProfileLR [LHC], RatioOfPLR [TeV], LR [LEP]) 
–  Use CLS technique (yes/no) 

•  Technical options 
–  Range of POI to scan  
–  Fixed number of steps (for nice plots),  

or -1 for adaptive sampling (for precise and fast limit calculations) 
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Exercises 
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Exercises A – Specifying a ModelConfig 

•  To make generic RooFit pdfs suitable for statistical analysis the 
following must be defined 

–  The pdf f(x|mu,theta) 
–  The parameter-of-interest (mu) 
–  The nuisance parameters (theta) 
–  If only one pdf is specified it is assumed to be for the signal hypothesis, and the 

background hypothesis is assumed to that pdf with mu=0 

•  Copy mod3/ex3A.C as starting point 
–  The file contains a slight modification of ex2C (Gaussian+Exponential), now as extended 

pdf and with somewhat different parameters 
–  Fix parameters ‘mean’ and ‘tau’ (using var->setConstant(kTRUE)) so that the model 

effectively has no nuisance parameters 
–  Create a ModelConfig object [ModelConfig mc(“name”,wspacePtr)] ; 
–  Configure it by calling its methods SetPdf(RooAbsPdf*) and SetObservables

(),SetParametersOfInterest(),SetNuisanceParameters() 
•  The latter three all take a RooArgSet as argument. If you need to specify only one element, you can optionally 

omit the set. If you need to pass an empty set, simply pass RooArgSet(). 

–  Import the ModelConfig object mc also in the workspace (use import()) and write the 
workspace to a ROOT file named “splusbmodel.root” 

•  Copy the completed ex3A.C to ex3A_np.C 
–  In this copy remove the lines that fix mean and tau, and instead define these as 

nuisance parameters in ModelConfig 
–  Write this configuration of the workspace into file “splusbmodel_np.root” 
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Exercise B – Using RooStats standard tools 

•  Copy mod3/StandardProfileLikelihoodDemo.C  
–  NB You can also find this file in $ROOTSYS/tutorials/roostats 

–  Run ‘root –l StandardProfileLikelihoodDemo.C
(“splusbmodel.root”,”w”)’ which will visualize the profile likelihood 
scan and the 95% interval associated with the profile likelihood 
ratio 

–  Repeat for splusbmodel_np.root. What is the effect of the 
nuisance parameters? 

•  Copy mod3/StandardTestStatDistributionDemo.C 
–  NB You can also find this file in $ROOTSYS/tutorials/roostats 

–  Run as the above macro, passing the file name and workspace 
name for both root files 

–  This macro will show the distribution of the test statistic 
q_mu_hat, with mu set to the fitted POI value and overlay the 
distribution of q_mu_hat generated from the pdf with 
mu=mu_hat. Overlaid is the asymptotic expectation of this 
distribution (a half chi-square distribution) 
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Exercise B - continued 

•  Copy mod3/StandardHypoTestInvDemo.C 
–  NB You can also find this file in $ROOTSYS/tutorials/roostats 

–  This is the single most powerful and useful macro of roostats that 
runs the full frequent limit setting procedure for any pdf stored in 
a workspace with a modelconfig. 

•  Iteration 1 – Limit from Hypothesis test inversion based 
on Neyman construction with standard profile likelihood 
test statistic (t_mu) 
–  Run ‘root –l ‘StandardHypoTestInvDemo

(”splusbmodel_np.root","w", "ModelConfig","","obsData”,
0,2,kTRUE,10,0,10,1000) 

Wouter Verkerke, NIKHEF, 90 

0=FrequentistCalculator 

2=ProfileLikelihoodTestStat 

kTRUE= use CLS 10,0,4 = fixed scan of POI 
              in 10 steps from 0 to 4 

1000= 1000 toys 
           per expt 



Exercise B - continued 

–  It will take about 5 minutes. If you have a multi-core host you can 
speed this up: edit the macro and set useProof to true and set 
nworkers to the number of cores 

–  You will get output plots with the test statistic distributions for 
each sampled point of the POI (with toys for signal and 
background in each). The scan information is summarized in 
another plot that shows the p-values (p(s+b),p(b) and CLS) as 
function of the POI, and the expected limits with one and 2 sigma 
bands. 

•  Iteration 2 - Rerun with the one-sided LHC test statistic 
–  Choose 3=OneSidedProfileLikelihoodTestStat (as the 2nd integer 

argument).  

–  This this give a stronger exclusion? 

•  Iteration 3 – Adaptive scanning of pvalues-vs-POI curve 
for improved precision 
–  Set the number of scan points to -1 and rerun 
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Exercise C – A template model 

•  Copy mod3/ex3C.C 
–  This file contains a template likelihood model of the form  

f(x|alpha)g(y|alpha) where f(x|alpha) is a template morphing model  - 
the ‘main measurement’ and g() is a subsidiary measurement that 
represents the result of an external measurement on alpha (here 
modeled as a Gaussian) 

•  Visualize the model 
–  To understand the structure of this model, visualize the main 

measurement pdf ‘main_measurement’ as function of both x and 
alpha: 

•  TH2* hh_pdf = pdf->createHistogram(“x,alpha”)->Draw(“lego”) ; 

•  Prepare the model 
–  Write a ModelConfig object for this pdf, include it in the workspace and 

write it to a file “npmodel.root”. Note that the model config for such a 
pdf needs one extra specification: the “subsidiary observables” must 
be specified (in this case ‘y’). Use the method SetGlobalObservables() 
to do this. 

•  Calculate limits  
–  Repeat exercise B for this model (just change the file name)  
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