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Outline of this course 

•  Advances statistical methods – Theory and practice 

•  Focus on limit setting and discovery for the LHC 

•  Part I – Fundamentals : Tue morning 
–  Interpreting probabilities 

–  Bayes theorem : P(data|theo) vs P(theo|data) 

–  Counting experiments in detail: p-values, limits and CLs 

–  The Neyman construction 

–  Test statistics from likelihood ratios 

–  One-side ‘LHC’ test statistics 

•  Part II – Software : Tue afternoon 
–  Introduction to RooFit and RooStats 

–  Model building, the workspace and the factory 
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Outline of this course 

•  Part III – Wed morning 
–  Introducing nuisance parameters 

–  Formulating models with nuisance parameters 

–  Template morphing techniques 

–  Dealing with nuisance parameters in statistical techniques 

–  Frequentist vs Bayesian treatment of nuisance parameters 
 

•  Part IV – Wed afternoon 
–  Expected limits 

–  Asymptotic formulas for test statistics 

–  Understanding and evaluating the look-elsewhere-effect 

–  Constructing combinations with the Higgs as example  
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Probabilities and their interpretation 
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Introduction 

•  Statistics in particle physics –  
Quantifying our results in terms of probabilities for 
theoretical models and their parameters, e.g. 
–  Hypothesis testing  (“SM is excluded at 95% C.L.”) 
–  Interval estimation (“170 < m(t) < 175 at 68% C.L.”) 

 

•  Goal of this course: how to make such statements for 
practical problems in particle physics 

•  Precise interpretation of formulated results often 
surprisingly subtle 
–  What is our interpretation of a probability? 
–  Is our result P(data|theory), or P(theory|data)? 
–  Does our statement depend on P(theory) before the measurement? 
–  Also relates to question what you want to publish? An updated ‘world 

view’ on the Higgs boson, or purely the result obtained from a 
particular experiment, to serve as (independent) ingredient for 
consideration on the existence of the Higgs boson? 
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Introduction – what we mean with probabilities 

•  Two physicists meet at a bus stop in Brussels.  
After observing busses come and go for about half an 
hour, each is asked to make a statement on the arrival of 
the next bus 
–  Physicist A says “I believe the next bus will come 10 +/- 5 minutes” 
–  Physicist B says “The probability that a buss will pass between 10 and 

20 minutes from now is 68%” 

•  Both physicists have a valid definition of probability  
(i.e. obeying Kolmogorov axioms),  
but have an important difference in interpretation 
–  Physicist A defines probability as a (personal) degree of belief.  

His answer is a probability density function in his belief of the true 
arrival time of the bus (Bayesian interpretation) 

–  Physicist B defines probability as a frequency in an ensemble of 
repeated experiments. His answer makes no statement on the true 
arrival time, which is taken as fixed but unknown. His statement is 
constructed such that in 68% of future observations the bus will arrive 
in the stated interval (Frequentist interpretation) 

•  When formulating results in terms of probabilities one 
should always decide which interpretation is used 
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Probabilities and Conditional Probabilities 

•  Abstract mathematical probability P can be defined in 
terms of sets and axioms that P obeys.  

•  If the axioms are true for P, then P obeys Bayes’ 
Theorem 
 

 P(B|A) = P(A|B) P(B) / P(A) 
 
 
 
 
 
 

 P(T|D) = P(D|T) P(T) / P(D) 
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Essay “Essay Towards Solving a Problem 
in the Doctrine of Chances”  published in 
Philosophical Transactions of the Royal 
Society of London in 1764 

This is what we usually want to know: 
P((no)Higgs|LHCdata) 
 

This is result of our experiment: 
P(LHCdata|(no)Higgs) 

What is P((no)Higgs)? 

(normalization term) 



Bayes’ Theorem in Pictures 
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What is the “Whole Space”? 

•  Note that for probabilities to be well-defined, the “whole 
space” needs to be defined, which in practice introduces 
assumptions and restrictions. 

•  Thus the “whole space” itself is more properly thought 
of as a conditional space, conditional on the 
assumptions going into the model (Poisson process, 
whether or not total number of events was fixed, etc.). 

•  Furthermore, it is widely accepted that restricting the 
“whole space” to a relevant subspace can sometimes 
improve the quality of statistical inference. 
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Intuitive examples of P(A|B) ≠ P(B|A) 

•  Intuitive 
 
P(pregnant|woman) ≠ P(woman|pregnant) 

 P(sunny|taking photos) ≠ P(taking photos|sunny) 

•  Less intuitive... 

 P(data|no-higgs) ≠ 1-P(higgs|data) 
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Using Bayes theorem 

•  P(T|D) = P(D|T) P(T) / P(D) 

•  Simplest possible experiment: a flue test. 

•  Two completing hypotheses: have flue, don’t not flue 

•  Suppose we know P(D|T): 
–  P(D=+|T=+) = 0.98 (98% of flue cases correctly detected) 

–  P(D=-|T=-) = 0.99 (99% of healthy people diagnosed healthy) 

–  P(D=-|T=+) = 0.02, P(D=+|T=-) = 0.01 

•  Observation: D=+ (I test positive) 

•  Question: What are odds I have flue, i.e. P(T=+|D=+)  

•  Answer: Can’t be answered without p(T=+)! 
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Using Bayes theorem 

•  Question: What are odds I have flue, i.e. P(T=+|D=+)  

•  Suppose P(T=+)=0.01 (1% of population has flue), 
then 
–  P(D) = P(D=+|T=-)*P(T=-) + P(D=+|T=+)*P(T=+) 

      = 0.01*0.99        + 0.98*0.01 
      = 0.0197 

–  P(T=+|D=+) = P(D=+|T=+)P(T=+)/P(D=+)  
             = 0.98*0.01/0.0197 = 0.497 

•  You can get any answer  
between 0 and 1 
depending on choice of P(T)… 
–  Makes it difficult to see P(T|D) 

as an objective summary 
of your measurement 

–  But it does provide a coherent 
framework to update your from  
before the test P(T) to after the  
test P(T|D) 

P(
T=

+
|D

=
+

) 

P(T=+) 



A Note re Decisions 

•  Suppose that as a result of the previous experiment, 
your degree of belief in the model is P(have flu|positive 
test) = 99%, and you need to decide whether or not to 
take an action  
–  Visit doctor, cancel vacation etc...  

•  Question: What should you decide? 

•  Answer: Cannot be determined from the given 
information! 
–  Need in addition: the utility function (or cost function), which 

gives the relative costs (to You) of a Type I error (declaring model 
false when it is true) and a Type II error (not declaring model 
false when it is false). 

•  Thus, Your decision, such as where to invest your time 
or money, requires two subjective inputs: Your prior 
probabilities, and the relative costs to You of outcomes. 

Wouter Verkerke, NIKHEF  



What do we want to report? 

•  You cannot state P(theory|data) without P(theory) 
P(theory|data) may answer the question: “does the 
Higgs exist?”, but it cannot summarize your experiment 
result without prior assumptions on P(theory) 

•  Also statements on P(theory|data) often (but not 
always) restricted to Bayesian interpretation of 
probability, as frequentist formulation of P(theory) often 
impossible 
–  Flu test OK à p(theo) is fraction of population with flue 

–  B-tagging: p(b-jet|b-tag) = p(b-tag|b-jet)p(b-jet)  
OK à p(b-jet) is fraction of all jets that are b-jets 

–  Higgs discovery: p(Higgs|LHCdata) = p(LHCdata|Higgs)p(Higgs) 
Not OK à p(Higgs) not defineable as a frequency (there is only 
one universe) 

•  In HEP, results are often stated as P(data|theo) with a 
Frequentist interpretation of probabilities 
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What Can Be Computed without Using a Prior? 

•  Not P(constant of nature | data). 
 

1.  Confidence Intervals for parameter values, as 
defined in the 1930’s by Jerzy Neyman. 

2.  Likelihood ratios, the basis for a large set of 
techniques for point estimation, interval estimation, 
and hypothesis testing. 

 

•  These can both be constructed using frequentist 
definition of P. 
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Simple versus composite hypothesis 

•  Flu example involved a simple hypothesis 

•  In particle physics composite hypothesis are most common 
–  Simply hypothesis ‘Standard Model with Higgs boson’ 

–  Composite hypothesis ‘Standard Model with Higgs boson with 
production cross-section of X pb’ where X is a parameter 

•  Introduces one (or more) model parameters in the 
hypothesis we’re testing and in our statement of the final 
result 

•  Can test hypothesis for any value of X, e.g. 
–  P(data|theory(x=35)) = 3% 

–  P(data|theory(x=20)) = 5% 

–  P(data|theory(x=10)) = 20% 

–  P(data|theory(x=5)) = 70% 

X<20 at 95% C.L. 

Hypothesis testing 
Confidence intervals 

(can be constructed without p(theory)!) 



Understanding the Poisson counting experiment 
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P-values and limits for counting experiments 

•  This morning we will focus on the simplest of 
measurements: counting experiments 
–  Data: Event count collected (N) in a fixed time frame: 

–  Theory: the expected distribution for N for repeated measurements  

–  We assume (for know) an exact prediction  
for the number of background events: b=5 

•  The observed number n will follow a Poisson distribution: 

 

•  The relevant hypotheses are 
–  H0 : all events are of the background time 

–  H1:  the events are a mixture of signal and background 

•  Rejecting H0 with Z>5 constitutes discovery of signal 
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P-values and limits for counting experiments 

•  Suppose we measure N=15 
–  Did we discover signal (at Z=5)? 

•  Suppose we measure N=7 
–  What signal strengths can we exclude 

•  Suppose we measure N=2 
–  What do we learn from that? 

 

•  Given a Poisson  
distribution  
with µ=s+(b=5),  
–  we expect the  

following  
distributions  
for Nobs  
for S=0, S=5, S=10, S=15 
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s=10 
s=15 



Interpreting Nobs=7 
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•  Now make a measurement N=Nobs (example Nobs=7) 
–  P(Nobs=7|T(s=0)) = Poisson(7;5)    = 0.104  

–  P(Nobs=7|T(s=5)) = Poisson(7;10)   = 0.090  

–  P(Nobs=7|T(s=10)) = Poisson(7;15) = 0.010  

–  P(Nobs=7|T(s=15)) = Poisson(7;20) = 0.001  
 

•  This is great  
feature of  
simple counting 
experiments:  
for each  
observation P(D|T) 
can be trivially 
calculated 

 

  

s=0 

s=5 

s=10 
s=15 



Interpreting Nobs=7 

•  Formulating discovery more precisely:  
 
“What fraction of future measurements would result  
in 7 or more events, if the bkg-only hypothesis is true“  
 
= ‘p-value of background hypothesis’ 
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Interpreting N=15 
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•  Another example: Nobs=15 for same model, what is the p-
value for the background? 
 
 
 
 

 
–  Result customarily re-expressed as odds of a  

Gaussian fluctuation with equal p-value (3.5 sigma for above case) 

Nobs=22 gives pb < 2.8 10-7 (‘5 sigma’) 
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At what p-value does one declare discovery? 

•  HEP folklore: claim discovery when p-value of 
background only hypothesis is  2.87 × 10-7, 
corresponding to significance Z = 5. 
 

•  This is very subjective and really should depend on the 
prior probability of the phenomenon in question, e.g., 
 
–  phenomenon        reasonable p-value for discovery 

D0D0 mixing   ~0.05 
Higgs    ~10-7  (?) 
Life on Mars   ~10-10 

Astrology    ~10-20 

•  Cost of type-I error (false claim of discovery) can be 
high 
–  Remember cold nuclear fusion ‘discovery’ 
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Upper limits (one-sided confidence intervals) 

•  Can also define p-values for hypothesis with signal: ps+b 

–  Note convention: integration range in ps+b is flipped 
 
 
 
 
 
 

 
 

•  Convention: express result as value of s for which  
p(s+b)=5% à “s>6.8 at 95% C.L.” 
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ps+b = Poisson(N;b+ s)dN
0

Nobs

!
p(s=15) = 0.00025 
p(s=10) = 0.007 
p(s=5)   = 0.13 
 
p(s=6.8) = 0.05 
 



Upper limits (one-sided confidence intervals) 

•  Procedure of scanning for the value of s so that  
p(s+b)=5% is called “Hypothesis Test Inversion” and 
invariably involves some numerical method to find that 
point.  

•  Can scan ‘by hand’ in fixed steps [left] in signal yield, or 
develop smart iterative algorithm [right] 
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Interpreting N=1 

•  Need to be careful about interpretation p(s+b) in terms 
of inference on signal only 
–  Since p(s+b) quantifies consistency of signal plus background 

–  Problem most apparent when observed data  
has downward stat. fluctations w.r.t background expectation 
 

•  Example: Nobs =1 
 

•  ‘Spurious exclusion’  
due to weak sensitivity 
–  For low s, distributions for 

s and s+b are very similar 
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à  ps+b(s=0) = 0.04 
 
 s≥0 excluded at >95% C.L. ?! 

s=0 

s=5 

s=10 
s=15 



Interpreting N=1 (continued) 

•  Not problematic in strict frequentist interpretation – we expect 
this result in 5% of the experiments, but complicates 
interpretation of result in terms of signal   

•  Problem is that we know that s must be ≥0 
–  In a Bayesian approach we construct P(t|d)=P(d|t)P(t)  

and we can include this prior knowledge on s in p(t),  
e.g. p(theory)=0 for s<0 

–  In Frequentist approach we don’t want to use  
(or formulate) p(theory), so how incorporate  
this in our result? 

•  Current LHC solution is called ‘CLs’ 
–  Instead of p(s+b) base test on 

 
 

 
–  If observation is also unlikely under 

bkg-only hypothesis, net effect is increased  
limit on s (in areas of low sensitivity) 

–  For Nobs=1  exclude s>3.4 at 95%  
(instead of s>0)  

.).(%5
1

ge
p

pCL
b

bs
S =

−
≡ +

s=0 

s=5 
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Modified frequentist approach 

•  The CLS method is sometimes also referred to as the 
‘modified’ frequentist approach 

•  Note that CLS is a HEP invention (at the time of the LEP 
experiments), it is not used in the professional statistics 
literature 

•  Within HEP it is generally accepted,  
and is the current recommendation for ATLAS/CMS 
(Higgs) results, but alternative prescriptions exist with 
similar effect, e.g. 
–  Power constrained limits 

–  Feldman-Cousins 
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The Neyman construction 
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Introduction 

•  Poisson counting experiment illustrates procedures to 
compute frequentist statements  
–  P-value: probability that background hypothesis produces 

observed result, or or more extreme (‘discovery’) 

–  Upper limit: signal strength that has that has a preset probability 
(usually 5%) produce observed result, or less extreme  
à s < XX at 95% C.L. 

•  Upper limit is a special case of a frequentist confidence 
interval  
–  Interval is [0,XX] for the above case 

•  Next: the ‘Neyman construction’ – a prescription to 
construct confidence intervals for any measurement  
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Confidence Intervals 

•  “Confidence intervals”, and this phrase to describe 
them, were invented by Jerzy Neyman in 1934-37.  
–  While statisticians mean Neyman’s intervals (or an approximation) 

when they say “confidence interval”, in HEP the language tends to 
be a little loose. 

–  Recommend using “confidence interval” only to describe intervals 
corresponding to Neyman’s construction (or good approximations 
thereof), described below. 

•  The slides contain the crucial information, but you will 
want to cycle through them a few times to “take home” 
how the construction works, since it is really ingenious –
perhaps a bit too ingenious given how often confidence 
intervals are misinterpreted. 

•  In particular, you will understand that the confidence 
level does not tell you “how confident you are that the 
unknown true value is in the interval” –only a subjective 
Bayesian credible interval has that property! 

Wouter Verkerke, NIKHEF  
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How to construct a Neyman Confidence Interval 

•  Simplest experiment: one measurement (x), one theory 
parameter (θ) 

•  For each value of parameter θ, determine distribution in in 
observable x 

Wouter Verkerke, NIKHEF 

observable x 

Compare to 
Poisson example 



How to construct a Neyman Confidence Interval 

•  Focus on a slice in θ 
–  For a 1-α% confidence Interval, define acceptance interval  that 

contains 100%-α% of the probability  

Wouter Verkerke, NIKHEF 

observable x 

pdf for observable x 
given a parameter value θ0 



How to construct a Neyman Confidence Interval 

•  Definition of acceptance interval is not unique 
–  Algorithm to define acceptance interval is called ‘ordering rule’ 
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observable x 

pdf for observable x given a parameter value θ0 

observable x 

observable x 

Lower Limit 

Central 

Other options, are e.g.  
‘symmetric’ and ‘shortest’ 

Compare to 
Poisson example 



How to construct a Neyman Confidence Interval 

•  Now make an acceptance interval in observable x 
for each value of parameter θ 
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observable x 



How to construct a Neyman Confidence Interval 

•  This makes the confidence belt 
–  The region of data in the confidence belt can be considered as 

consistent with parameter θ 

Wouter Verkerke, NIKHEF 
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How to construct a Neyman Confidence Interval 

•  This makes the confidence belt 
–  The region of data in the confidence belt can be considered as 

consistent with parameter θ 
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observable x 



How to construct a Neyman Confidence Interval 

•  The confidence belt can constructed in advance of any 
measurement, it is a property of the model, not the data 

•  Given a measurement x0, a confidence interval [θ+,θ-] can 
be constructed as follows 

•  The interval [θ-,θ+] has a 68% probability to cover the true 
value 
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Confidence interval – summary 

•  Note that this result does NOT amount 
to a probability density distribution 
in the true value of θ 

•  Let the unknown true value of θ be θt.  
 
In repeated expt’s, the confidence  
intervals obtained will have  
different endpoints [θ1, θ2],  
since the endpoints are functions  
of the randomly sampled x.  
 
A little thought will convince you that  
a fraction C.L. = 1 – α of intervals  
obtained by Neyman’s construction 
will contain (“cover”) the fixed but  
unknown µt. i.e., 
 
P( θt ∈[θ1, θ2]) = C.L. = 1 -α. 
 

•  The random variables in this equation are θ1 and θ2, and not θt,  
•  Coverage is a property of the set, not of an individual interval!  
•  It is true that the confidence interval consists of those values of θ for 

which the observed x is among the most probable to be observed. 
–  In precisely the sense defined by the ordering principle used in the Neyman construction 
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Coverage 

•  Coverage = Calibration of confidence interval 
–  Interval has coverage if probability of true value in interval  

is α% for all values of mu 

–  It is a property of the procedure, not an individual interval 

•  Over-coverage : probability to be in interval > C.L 
–  Resulting confidence interval is conservative 

•  Under-coverage : probability to be in interval < C.L 
–  Resulting confidence interval is optimistic 

–  Under-coverage is undesirable à You may claim discovery too early 

•  Exact coverage is difficult to achieve 
–  For Poisson process impossible  

due to discrete nature of event count 

–  “Calibration graph” for preceding example below  
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Exact Coverage = Fixing the ‘type I error rate’ 

•  Definition of terms 
–  Rate of type-I error = α	


–  Rate of type-II error = β	


–  Power of test is 1-β	


•  Treat hypotheses asymmetrically 
–  Fix rate of type-I error to preset goal 
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Confidence intervals for Poisson counting processes 

•  For simple cases, P(x|µ) is known analytically and the 
confidence belt can be constructed analytically  
–  Poisson counting process with a fixed background estimate,  

–  Example: for P(x|s+b) with b=3.0 known exactly 

Wouter Verkerke, NIKHEF 

Confidence belt from  
68% and 90% central intervals 

Confidence belt from  
68% and 90% upper limit 



Likelihood (ratios) and test statistics  
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Confidence intervals for non-counting experiments 

•  Typical LHC result is not a simple number counting 
experiment, but looks like this: 

 

•  Any type of result can be converted into a single 
number by constructing a ‘test statistic’  
–  A test statistic compresses all signal-to-background  

discrimination power in a single number 

-  Result is a distribution,  
   not a single number 
 
-  (Models for signal and background 
    have intrinsic uncertainties à for 
    tomorrow) 



The Neyman-Pearson lemma 

•  In 1932-1938 Neyman and Pearson developed in which 
one must consider competing hypotheses 
–  Null hypothesis (H0) = Background only 

–  Alternate hypotheses (H1) = e.g. Signal + Background 

•  The region W that minimizes the rate of the type-II 
error (not reporting true discovery) is a contour of the 
Likelihood Ratio 

•  Any other region of the same size will have less power 

•  à Use likelihood ratio as test statistic 
Wouter Verkerke, NIKHEF 



Formulating the likelihood for a distribution 

•  We observe n instances of x (x1…xn) 

•  The likelihood for the entire experiment assuming 
background hypothesis (H0) is 
 
 
 
 
and for the signal-plus-background hypothesis (H1) it is  
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Formulating the likelihood ratio 

•  With the likelihood Ls+b and Lb the ratio becomes 

•  To compute the p-values for the and s+b hypotheses 
given an observed value of Q we need the distributions 
f(Q|b) and f(Q|s+b) 
–  Note that the ‘-s’ terms is a constant and can be dropped 

–  The rest is a sum of contributions for each event, and each term 
in the sum has the same distribution  

–  Can exploit this to relate the distribution of Q to that of a single 
event using Fourier Transforms (this was done e.g. at LEP) 

Wouter Verkerke, NIKHEF, 47 

∑
=

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−=−=

n

i i

i

b

bs

bxf
sxf

b
ss

L
LQ

1 )|(
)|(1loglog2



Using a likelihood ratio as test statistic  

•  For discovery and exclusion it is common to reformulate 
hypothesis in terms of signal strength 
 
µ = signal strength / nominal signal strength (e.g. SM) 
 
so that µ=0 represents the background hypothesis  
and µ=1 represent the nominal signal hypothesis  
(e.g. the SM cross-section) 

•  In this formulation, likelihood ratio of previous page becomes 
 
 

 
–  This is the ‘Tevatron test statistic’ (without nuisance parameters) 

q = !2 ln L(data |µ =1)
L(data |µ = 0)



Using a likelihood ratio as test statistic 

•  At the LHC experiments a different test statistic is 
commonly used: 
 

•  Where µ can be chosen, e.g. 
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Use a likelihood ratio as test statistic 

•  Illustration of s vs s+b discrimantion power: t1: 

 )ˆ|(
)1|(ln21 µ

µ
dataL
dataLt =

−= µ is best fit  
value of µ 
^ 

‘likelihood of best fit’ 

‘likelihood assuming nominal signal strength’ 

t1 = 0.77 t1 = 52.34

On signal-like data q1 is small On background-like data q1 is large 



Use a likelihood ratio as test statistic 

•  Illustration of s vs s+b discrimantion power: t0: 
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t0 = 34.77 t0 = 0

t0 = !2 ln
L(data |µ = 0)
L(data | µ̂)

µ is best fit  
value of µ 
^ 

‘likelihood of best fit’ 

‘likelihood assuming zero signal strength’ 

On signal-like data t0 is large On background-like data t0 is small 



Setting limits with t1 

•  Observed value of t1 is now the ‘measurement’ 

•  Distribution of t1 = f(t1|µ=1) not calculable  
à But can obtain distribution from toy MC approach 
à Asymptotic form exists for Nà∞ 
 
 
 
 
 
 
 
 
 
 

•  Limit on µ (w/o CLS) : Find tµ for which 
 

•  P-value of bkg similarly obtained from t0  
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Confidence belts for non-trivial data 

•  What will the confidence belt look like when 
replacing 

x=3.2 

),( µµ xtx 
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Confidence belts with tµ as test statistic 

•  Use asymptotic distribution of tµ 

–  Wilks theorem à  
Asymptotic form of f(tµ|µ) is chi-squared distribution f(tµ|µ)=χ2(2⋅tµ,n),  
with n the number of parameters of interest (n=1 in example shown) 

–  Note that f(tµ|µ) is independent of µ! à  
For data generated under the hypothesis µ the the distribution of tµ is 
asymptotically always χ2(2⋅tµ,n)   

–  Example of convergence to asymptotic behavior  
f(tµ|µ) distribution for measurement 
consisting of 100 event with Gaussian 
distribution in x 
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excellent agreement  
up to Z=3 (tµ=4.5) 

 
(need a lot of toy MC 

to prove this up to Z=5…) 
 

The 
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totic 
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fidence 
belt 

Value of tµ representing 
fixed quantile of f(tµ|µ) 
is the same for all µ 



Confidence belts with tµ as test statistic 

•  What will the confidence belt look like when 
replacing 

x=3.2 

),( µµ xtx 
→

observable x 
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Measurement = tµ(xobs,µ)  
is now a function of µ 



Connection with likelihood ratio intervals 

•  If you assume the asymptotic distribution for tµ,  
–  Then the confidence belt is exactly a box  

–  And the constructed confidence interval can be simplified 
to finding the range in µ where tµ=½⋅Z2  
à This is exactly the MINOS error 

Wouter Verkerke, NIKHEF 
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LHC test statistics for discovery and limit setting 

Wouter Verkerke, NIKHEF, 57 



Note on test statistic tµ 

•  Note that high values of tµ (i.e. strong incompatibility of data with 
hypothesized signal strength µ) can arise in two ways 
–  An estimated signal strength µ-hat greater than the assumed signal 

strength µ  
–  An estimated signal strength µ-hat smaller than the assumed signal 

strength µ 

 

 

•  May result in a two-sided interval (i.e. rejected values of µ are 
both below and above those accepted) 

Wouter Verkerke, NIKHEF, 58 
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Test statistics q0 for discovery of a positive signal 

•  Important special case:  
test µ=0 for a class of models where we assume µ≥0 
–  Rejecting µ=0 effectively leads to discovery of new signal 

 

•  Define a new test statistic q0: 
 

–  Here only regard upward fluctuation of data as evidence against 
the background-only hypothesis 

–  Note that even though here physically µ≥0, we allow µ-hat to be 
negative. 

•  In the large sample limit its distributions becomes Gaussian and allows to write a 
simple expression for the distribution of this test statistic (will cover this tomorrow) 

 

Wouter Verkerke, NIKHEF, 59 
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Test statistic qµ for upper limits 

•  For the purpose of establishing an upper limit we 
introduce a new test statistic 

–  With this test statistic one does not regard data with µ-hat>µ as 
representing less compatibility with µ than the data obtained 

–  Note that q0 ≠ qµ(µ=0): q0 is zero if data fluctuate downward (µ-
hat<0), qµ is zero if data fluctuate upward (µ-hat>µ) 

–  Calculate p-value as usual 

Wouter Verkerke, NIKHEF, 60 
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Asymptotic formulae for p0 from q0 for Poisson model 

•  Well-known Gaussian approximation of significance for 
counting experiments 

•  Better approximation using Poisson likelihood in q0 

Wouter Verkerke, NIKHEF, 61 

Z ≈ √q0  with n=s+b 



Testing the approximate Poisson significance 

•  Model: Poisson(n|µs+b).  

•  Test hypothesis µ=0 for data generated with µ=1 
for s=2,5,10 and b=0.01 … 100 
–  Exact solutions ‘jumps’ due to discreteness of Poisson 

Wouter Verkerke, NIKHEF, 62 



Summary on LHC test statistics 

•  Test statistic tµ 
 
–  Can result in both 1-sided and 2-sided intervals as high values of 

tµ (data incompatible with hypothesis µ) can arise if µ>µ-hat or if 
µ<µ-hat 

–  Asymptotically relates to MINOS intervals 

•  Test statistic q0 
 

–  Formulated for discovery – does not count low statistical 
fluctuations against the background hypothesis 
 

•  Test statistic qµ 
 

–  Formulated for limit setting – does not count high statistical 
fluctuation again the signal hypothesis 
 

Wouter Verkerke, NIKHEF, 63 
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Bayesian intervals in 3 slides 

Wouter Verkerke, NIKHEF, 64 



Bayes’ Theorem Generalized to Probability Densities 

•  Original Bayes Thm:  
 

   P(B|A) ∝ P(A|B) P(B).  
 

•  Let probability density function p(x|µ) be the conditional pdf 
for data x, given parameter µ. Then Bayes’ Thm becomes 
 

   p(µ|x) ∝ p(x|µ) p(µ). 
 

•  Substituting in a set of observed data, x0, and recognizing 
the likelihood, written as L(x0|µ) ,L(µ), then 
 

   p(µ|x0) ∝L(x0|µ) p(µ),  
where: 
–  p(µ|x0) = posterior pdf for µ, given the results of this experiment 
–  L(x0|µ) = Likelihood function of µ from the experiment 
–  p(µ) = prior pdf for µ, before incorporating the results of this experiment 

 

•  Note that there is one (and only one) probability density in µ 
on each side of the equation, again consistent with the 
likelihood not being a density. 

Wouter Verkerke, NIKHEF  
[B.Cousins HPCP] 



Bayes’ Theorem Generalized to pdfs 

•  Graphical illustration of p(µ|x0) ∝ L(x0|µ) p(µ) 
 
 
 

•  Upon obtaining p(µ|x0), the credibility of µ being in any 
interval can be calculated by integration. 

Wouter Verkerke, NIKHEF 

p(µ|x0) L(x0|µ) p(µ) 

∝ ∗ 

Area that integrates  
X% of posterior -1<µ<1 at 68% credibility 



Using priors to exclude unphysical regions 

•  Priors provide a simple way to exclude unphysical regions 
from consideration 

•  Simplified example situations for a measurement of mν
2 

1.  Central value comes out negative (= unphysical). 

2.  Upper limit (68%) may come out negative, e.g. m2<-5.3, not so clear 
what to make of that 
 
 
 
  

–  Introducing prior that excludes unphysical region ensure limit in 
physical range of observable (m2<6.4) 

–  NB: Previous considerations on appropriateness of flat prior for domain 
m2>0 still apply Wouter Verkerke, NIKHEF 

p(µ|x0) with flat prior p(µ|x0) with p’(µ) p’(µ) 



Comparing Bayesian and Frequentist results 

•  Frequentist statements use only P(data|theory) 
(i.e. the likelihood) 
–  Formulate output as p-value for an hypothesis 

(the probability to measure observed result or more extreme is α% 
under the background hypothesis 

–  Formulate output as confidence interval: range of signal values for 
which p-value is below the stated threshold 

•  Bayesian statements calculate P(theory|data) 
–  Choice of prior will matter  
–  Formulate output as Bayesian credible interval integrate α% of 

posterior 
–  No equivalent of p-values 

•  Numeric results will usually differ a bit since  
statistical question posed is different 
–  Agreement generally worse at high confidence levels / low p-values 
–  Agreement generally better with increasing statistics 

Wouter Verkerke, NIKHEF, 68 



68% intervals by various methods for Poisson process with n=3 observed 

Wouter Verkerke, NIKHEF  
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Hands-on exercises – Part 1 

•  Any input files in http://www.nikhef.nl/~verkerke/brussel 

•  The goals of this set of hands-on exercises is to work with 
a very simple number-counting experiment and and 
calculate p-values and limits ‘by hand’ to appreciate the 
concepts 

•  The model we will be working with is  
 

  Poisson(N;µ=s+b)  
 
with b=3 precisely (no uncertainty on the prediction) and s 
as a free parameter 

•  Given the very simple nature of these exercises you can do 
these in plain ROOT.  
–  Some visualization of models provided for you in RooFit 

–  In plain root you can use function TMath::Poisson() 
which is always normalized on the range [0,inf] 

Wouter Verkerke, NIKHEF, 71 



Hands-on exercises - Part 1 

•  A) Visualizing the model (done for you in RooFit à mod1/ex1A.C) 
–  The provided macro plots 

•  P(n;µ=s+b) versus N for s=0 (background only) s=5, s=10 
•  P(N=7;µ) versus s (this is the likelihood L(s) for N=7).  
•  log(L(s)) 

–  Plot Poisson distributions for other values of s 
–  Plot the likelihood for other values of N  

•  B) The p-value of the background hypothesis  
–  Given an observation of N=7, calculate the probability to see 7 or more 

events for the background-only hypothesis (using Tmath::Poisson) 

•  C) An 95% C.L. upper limit on the signal 
–  Write a C++ function calc_prob(int N, double s) that returns the probability 

to observe N or less events for a signal count s.  
[ Here you are writing a function that performs a hypothesis test] 

–  Calculate the probability to see 7 or less events for the s=5 and s=10 
models. 

–  Write a C++ function find_limit(int N, double CL) that returns the value of s 
for which calc_prob(N,s)==CL. 
For simplicity I suggest you simply scan s in steps of 0.01 to find the right 
value. 
[ Here you are performing an ‘hypothesis test inversion’ to construct a 
confidence interval [0,x]]  

–  Calculate the 95% upper limits for s for N=0,1,2,3,4,5,6,7,8,9,10  
•  Note that for a statement “s>X excluded at 95% C.L.” you construct an interval [0,X] at 5% C.L.  

Wouter Verkerke, NIKHEF, 72 



Hands-on exercises – Part 1 

•  D) A 95% C.L. CLS limit on signal 
–  Calculate CLS for N=7. Remember that CLS = ps+b / (1-pb). 

–  For a discover observable N ps+b integrates [0,N]  
and 1-pb integrates [0,N] too  
(so you can calculate the latter with calc_prob(N,0) 

–  Write a C++ function calc_cls(int N, double s) that calculates CLS 
for N observed events and a signal hypothesis of s event. You can 
use calc_prob() of the previous exercise as a starting point 

–  Write a C++ function calc_cls_limit(int N) that calculates a upper 
limit using the CLS procedure for N observed events. You can use 
calc_limit() of the previous exercise as a starting point and simply 
substitute the call to calc_prob() to calc_cls().  

•  E) Comparing CLS limits and plain frequentist limits 
–  Make a plot of the CLS limits on s and plain frequent limit on s for 

observations of N=0,1,2,3,…20 to visualize the impact of the CLS 
procedure on the limits at low N  

Wouter Verkerke, NIKHEF, 73 



Hands-on exercises – Part 1 

•  F) Bayesian intervals  
     (done for you in RooFit à mod1/ex1F.C) 
–  A Bayesian interval on the same model is calculated by finding an 

interval that contains 95% of the posterior. The posterior is 
calculated as P(s) = L(s)*π(s), where π(s) is the prior 

–  A common choice of prior for upper limits where s ≥0, is a flat 
prior for s≥0 and π(s)=0 for s<0. For this particular case, the 
Bayesian upper limit can simply be calculated by find the value sUL 
for which 

 

–  The provided macro plots the cumulative distribution of the 
posterior function, normalized over the range [0,inf] so you can 
trivially find the value of sUL for which the above equation holds 

–  Calculate the Bayesian 95% upper limit for N=2,N=7  
and compare this to the classic and CLS limit for N=2,7 

Wouter Verkerke, NIKHEF, 74 
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