AXEL-2018 Introduction to Particle Accelerators

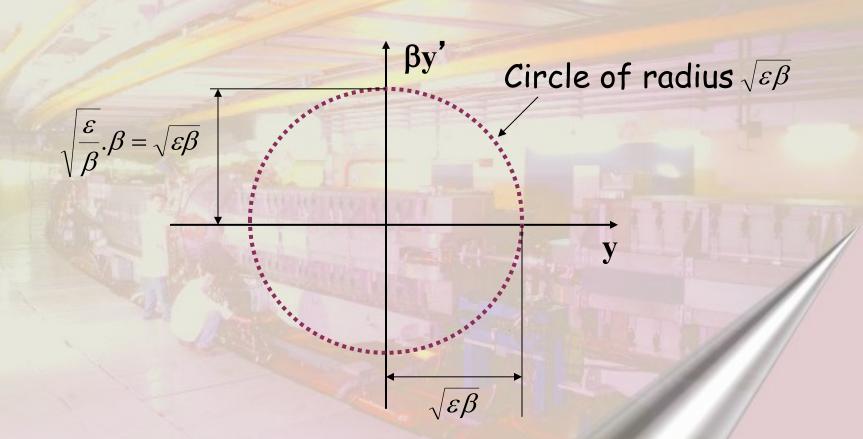
Resonances:

✓ Normalised Phase Space
✓ Dipoles, Quadrupoles, Sextupoles
✓ A more rigorous approach
✓ Coupling
✓ Tune diagram

Rende Steerenberg (BE/OP)

7 March 2018

Normalised Phase Space



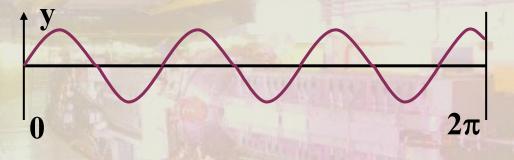
 \checkmark By multiplying the y-axis by β the transverse phase space is normalised and the ellipse turns into a circle.

Phase Space & Betatron Tune

If we unfold a trajectory of a particle that makes one turn in our machine with a tune of Q = 3.333, we get:

βy

 $2\pi q$



- ✓ This is the same as going 3.333 time around on the circle in phase space
- ✓ The net result is 0.333 times around the circular trajectory in the normalised phase space
- \checkmark q is the fractional part of Q
- ✓ So here Q= 3.333 and q = 0.333

R. Steerenberg, 7-Mar-2018

What is a resonance?

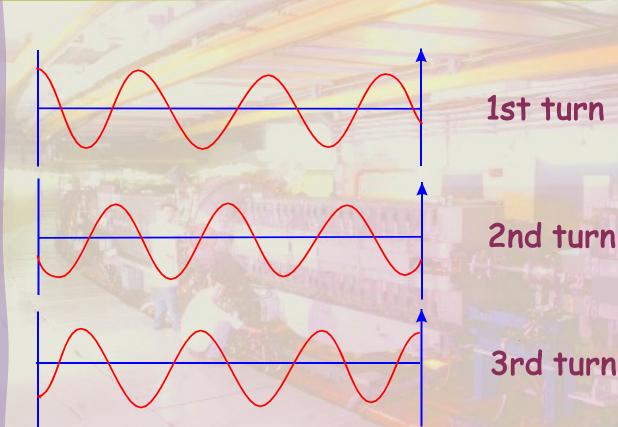
 After a certain number of turns around the machine the phase advance of the betatron oscillation is such that the oscillation repeats itself.

✓ For example:

- ✓ If the phase advance per turn is 120° then the betatron oscillation will repeat itself after 3 turns.
- This could correspond to Q = 3.333 or 3Q = 10
- ✓ But also Q = 2.333 or 3Q = 7
- \checkmark The order of a resonance is defined as 'n'

 $n \times Q = integer$

Q = 3.333 in more detail

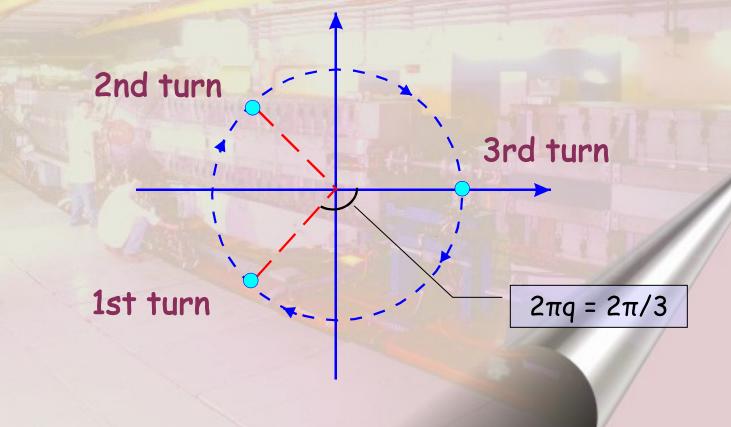


Third order resonant betatron oscillation 3Q = 10, Q = 3.333, q = 0.333

R. Steerenberg, 7-Mar-2018

Q = 3.333 in Phase Space

Third order resonance on a normalised phase space plot



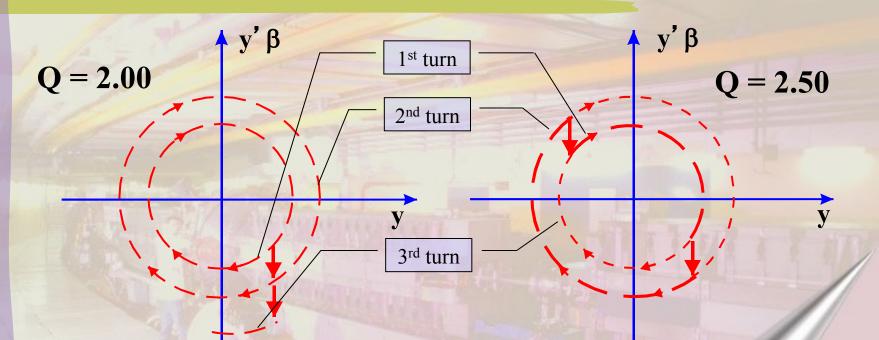
Machine imperfections

It is not possible to construct a perfect machine.

- Magnets can have imperfections
- The alignment in the de machine has non zero tolerance.
- ✓ Etc...
- ✓ So, we have to ask ourselves:
 - What will happen to the betatron oscillations due to the different field errors.
 - Therefore we need to consider errors in dipoles, quadrupoles, sextupoles, etc...
- ✓ We will have a look at the beam behaviour as a function of 'Q'
- ✓ How is it influenced by these resonant conditions?

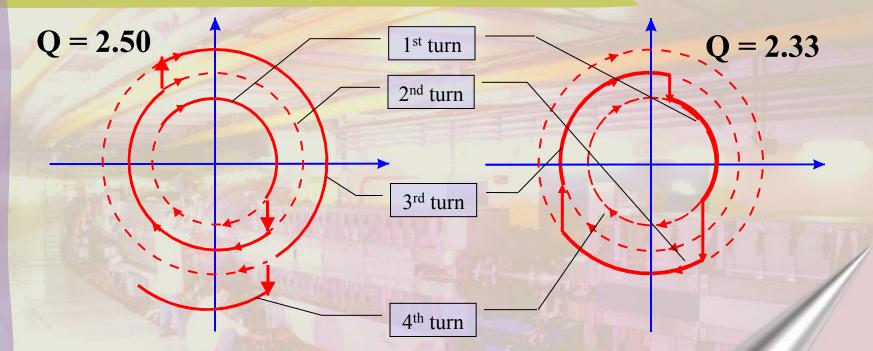
R. Steerenberg, 7-Mar-2018 AXEL - 2018

Dipole (deflection independent of position)



- ✓ For Q = 2.00: Oscillation induced by the <u>dipole kick</u> grows on each turn and the particle is lost (1st order resonance Q = 2).
- ✓ For <u>Q = 2.50</u>: Oscillation is cancelled out <u>every second turn</u>, and therefore the particle <u>motion is stable</u>.

Quadrupole (deflection ~ position)



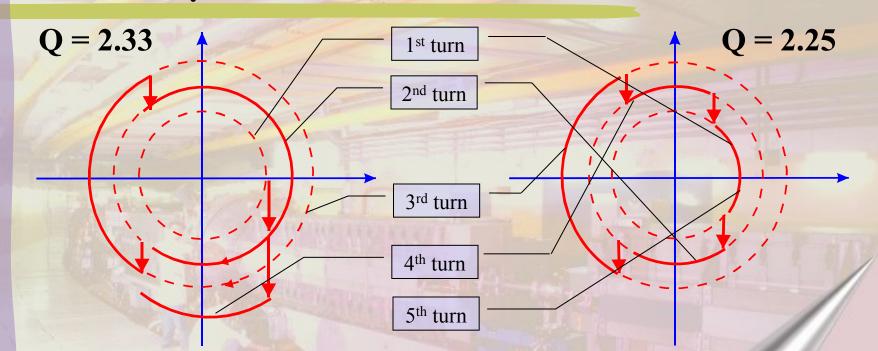
 For <u>Q = 2.50</u>: Oscillation induced by the <u>quadrupole kick</u> grows on each turn and the particle is lost

(2nd order resonance 2Q = 5)

 For Q = 2.33: Oscillation is cancelled out every third turn, and therefore the particle motion is stable.

R. Steerenberg, 7-Mar-2018

Sextupole (deflection ~ position²)



✓ For Q = 2.33: Oscillation induced by the <u>sextupole kick</u> grows on each turn and the particle is lost

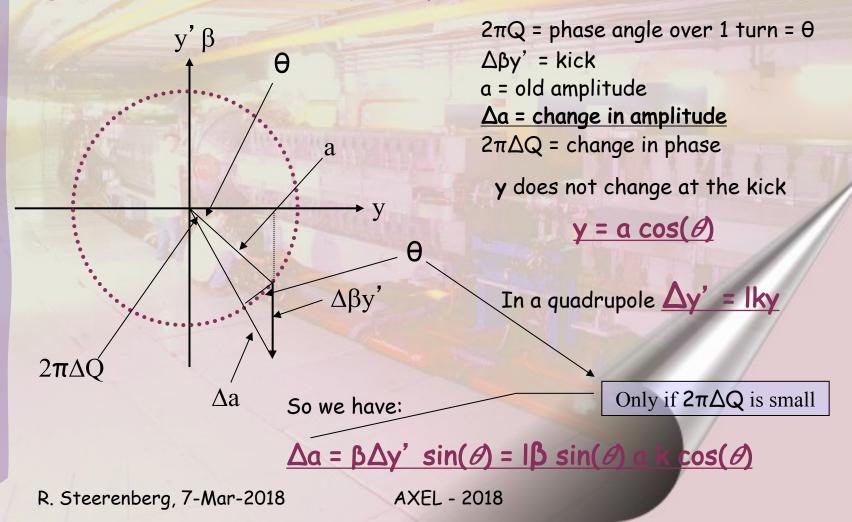
(3rd order resonance 3Q = 7)

✓ For <u>Q = 2.25</u>: Oscillation is cancelled out <u>every fourth turn</u>, and therefore the particle <u>motion is stable</u>.

R. Steerenberg, 7-Mar-2018

More rigorous approach (1)

✓ Let us try to find a mathematical expression for the amplitude growth in the case of a <u>quadrupole</u> error:



More rigorous approach (2)

 $\frac{\Delta a}{2} = \frac{\ell \beta k}{2} \sin(2\theta)$ ✓ So we have: $\Delta a = l \cdot \beta \cdot \sin(\theta) a \cdot k \cdot \cos(\theta)$... \checkmark Each turn θ advances by $2\pi Q$ $Sin(\theta)Cos(\theta) = 1/2 Sin (2\theta)$ \checkmark On the nth turn $\theta = \theta + 2n\pi Q$ ✓ Over many turns: $\frac{\Delta a}{a} = \frac{\ell \beta k}{2} \sum_{n=1}^{\infty} \sin(2(\theta + 2n\pi Q))$ This term will be 'zero' as it decomposes in Sin and Cos terms and will give a series of + and - that cancel out in all cases where the fractional tune $q \neq 0.5$ \checkmark So, for q = 0.5 the phase term, 2(θ + 2n π Q) is constant: $\sum_{n=1}^{\infty} \sin(2(\theta + 2n\pi Q)) = \infty$ and thus: $=\infty$

More rigorous approach (3)

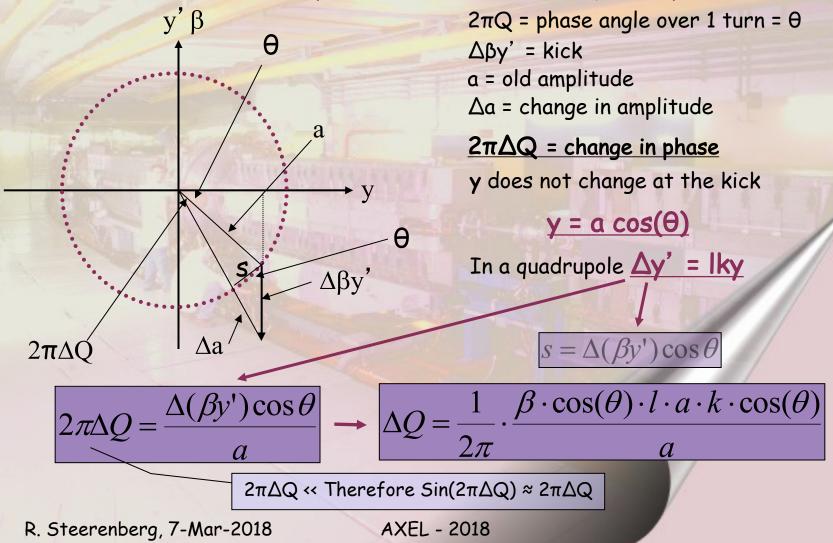
 In this case the amplitude will grow continuously until the particles are lost.

✓ Therefore we conclude as before that: <u>quadrupoles</u> excite 2nd order resonances for q=0.5

✓ Thus for Q = 0.5, 1.5, 2.5, 3.5,...etc.....

More rigorous approach (4)

 \checkmark Let us now look at the phase θ for the same quadrupole error:



More rigorous approach (5)

✓ So we have:
$$\Delta Q = \frac{1}{2\pi} \cdot \frac{\beta \cdot \cos(\theta) \cdot l \cdot a \cdot k \cdot \cos(\theta)}{a}$$

Since: $\cos^2(\theta) = \frac{1}{2}\cos(2\theta) + \frac{1}{2}$ we can rewrite this as:

 $\Delta Q = \frac{1}{4\pi} \cdot l \cdot \beta \cdot k \cdot (\cos(2\theta) + 1)$, which is correct for the 1st turn

✓ Each turn θ advances by $2\pi Q$ ✓ On the nth turn $\theta = \theta + 2n\pi Q$

$$\checkmark \text{ Over many turns: } \Delta Q = \frac{1}{4\pi} \ell \beta k \Big[\sum_{n=1}^{\infty} \cos(2(\theta + 2\pi nQ)) + 1 \Big]$$

✓ Averaging over many turns:

$$\Delta Q = \frac{1}{4\pi} \beta.k.ds$$

'zero'

R. Steerenberg, 7-Mar-2018

Stopband

$$\Delta Q = \frac{1}{4\pi} \beta.k.ds$$

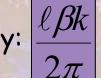
, which is the expression for the change in Q due to a quadrupole... (fortunately !!!)

But note that Q changes slightly on each turn

Related to Q

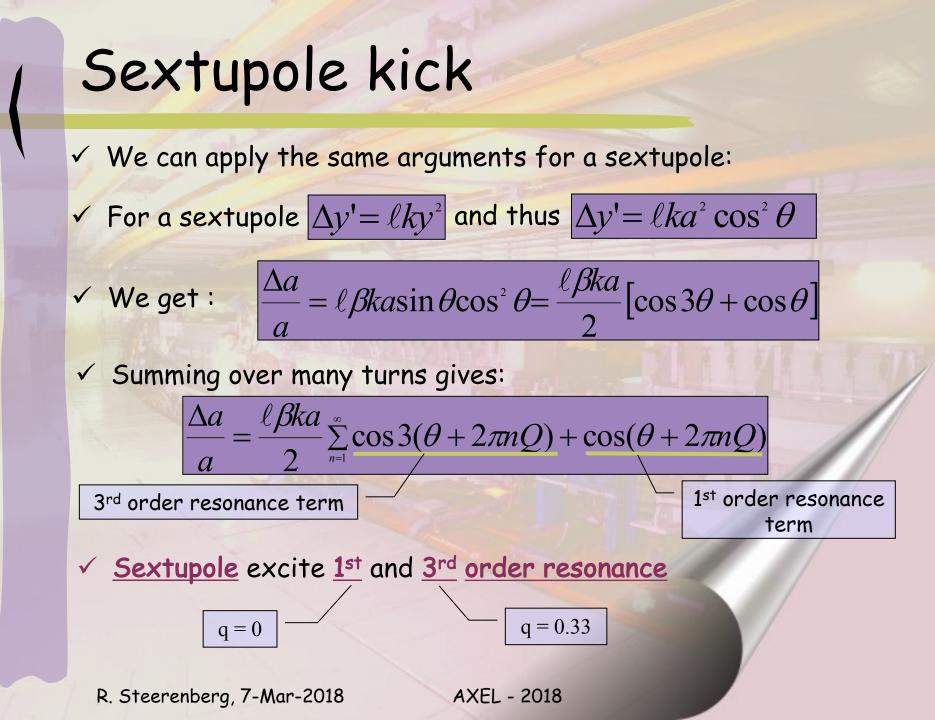
Max variation 0 to 2

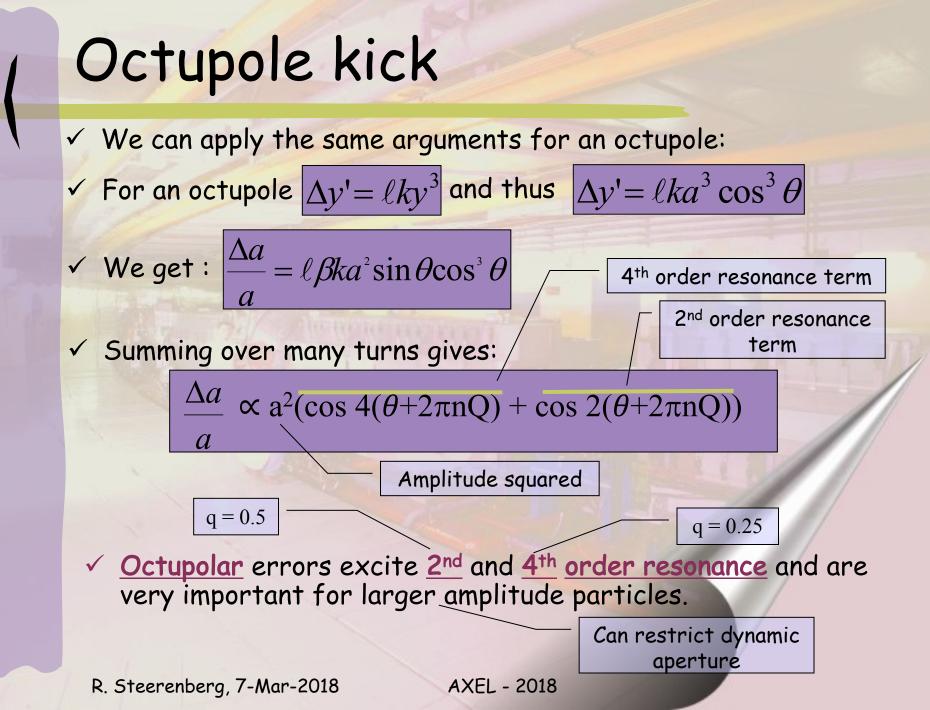
Q has a range of values varying by:



- ✓ This width is called the stopband of the resonance
- ✓ So even if q is not exactly 0.5, it must not be too close, or at some point it will find itself at exactly 0.5 and 'lock on' to the resonant condition.

 $\Delta Q = \frac{1}{4\pi} l \cdot \beta \cdot k(\cos(2\theta) + 1)$





Resonance summary

- ✓ Quadrupoles excite 2nd order resonances
- \checkmark <u>Sextupoles</u> excite <u>1st</u> and <u>3rd</u> order resonances
- ✓ Octupoles excite 2nd and 4th order resonances
- This is true for small amplitude particles and low strength excitations
- However, for stronger excitations sextupoles will excite higher order resonance's (non-linear)

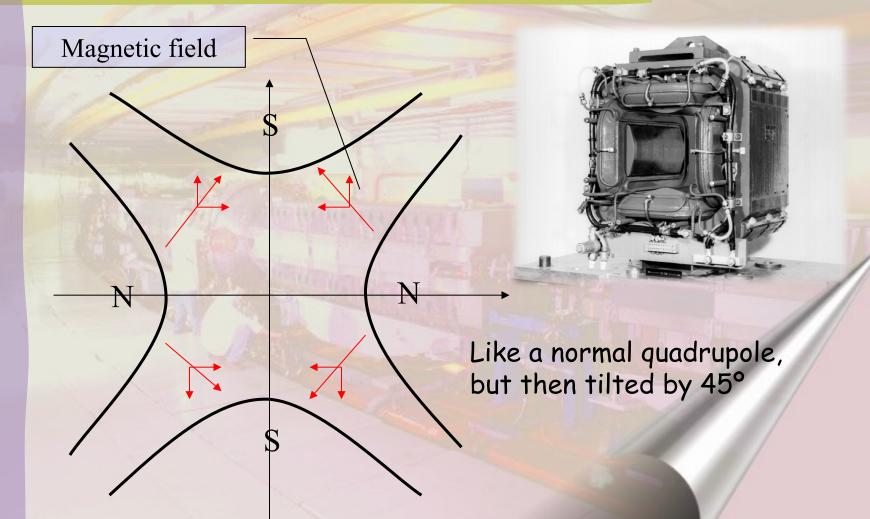
 Coupling is a phenomena, which converts betatron motion from one plane (horizontal or vertical) into motion in the other plane.

✓ Fields that will excite coupling are:

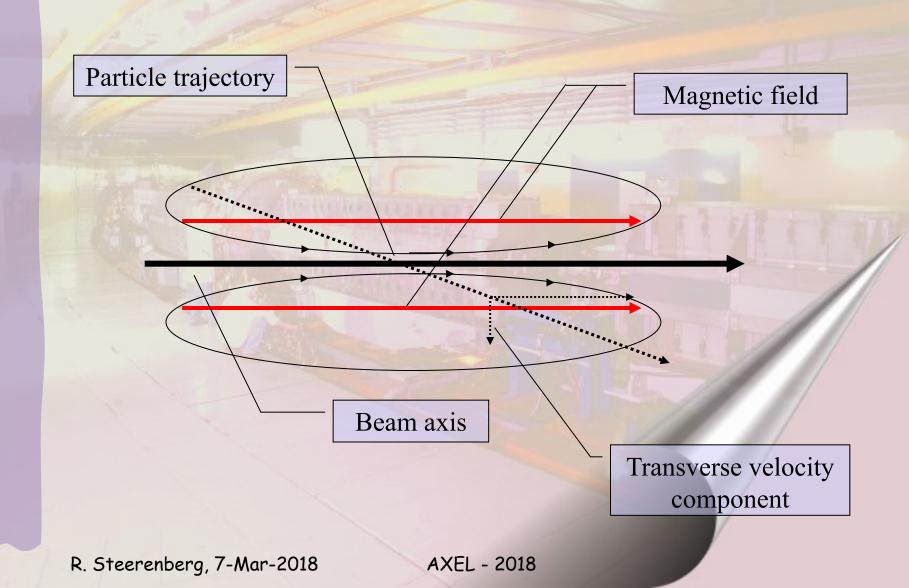
 Skew quadrupoles, which are normal quadrupoles, but tilted by 45° about it's longitudinal axis.

Solenoidal (longitudinal magnetic field)

Skew Quadrupole



Solenoid; longitudinal field (2)

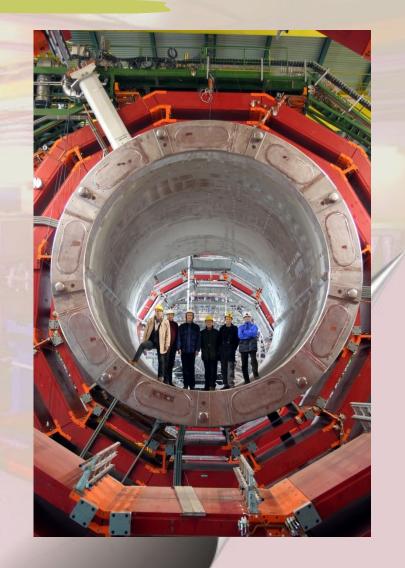


Solenoid; longitudinal field (2)

Above:

The LPI solenoid that was used for the initial focusing of the positrons. It was pulsed with a current of 6 kA for some 7 us, it produced a longitudinal magnetic field of 1.5 T.

> At the right: The somewhat bigger CMS solenoid



R. Steerenberg, 7-Mar-2018

Coupling and Resonance

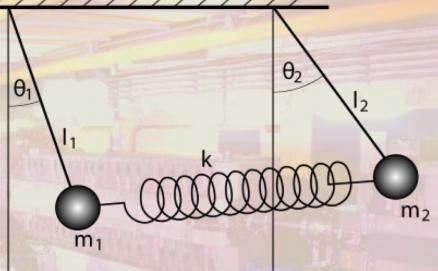
 This coupling means that one can transfer oscillation energy from one transverse plane to the other.

Exactly as for linear resonances there are resonant conditions.

 $nQ_h \pm mQ_v = integer$

✓ If we meet one of these conditions the transverse oscillation amplitude will again grow in an uncontrolled way.

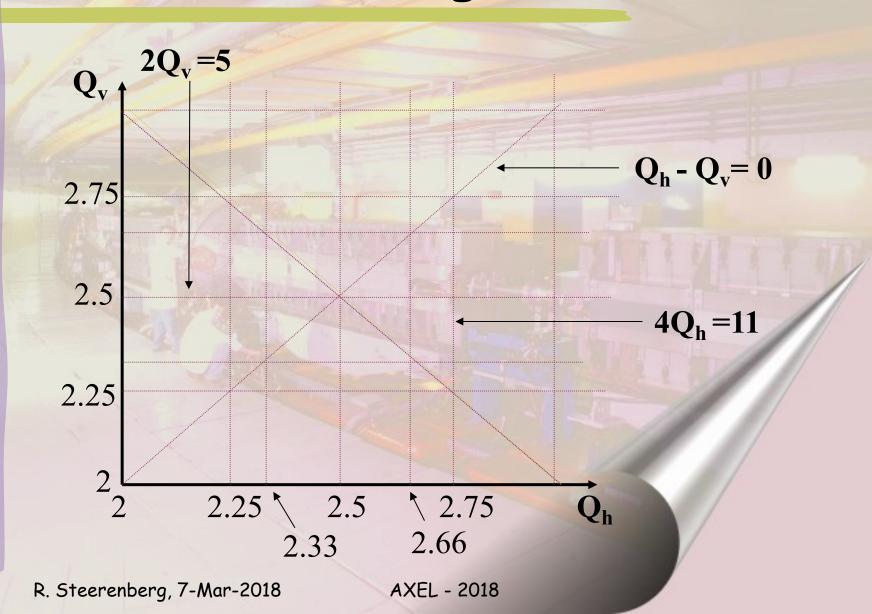
A mechanical equivalent



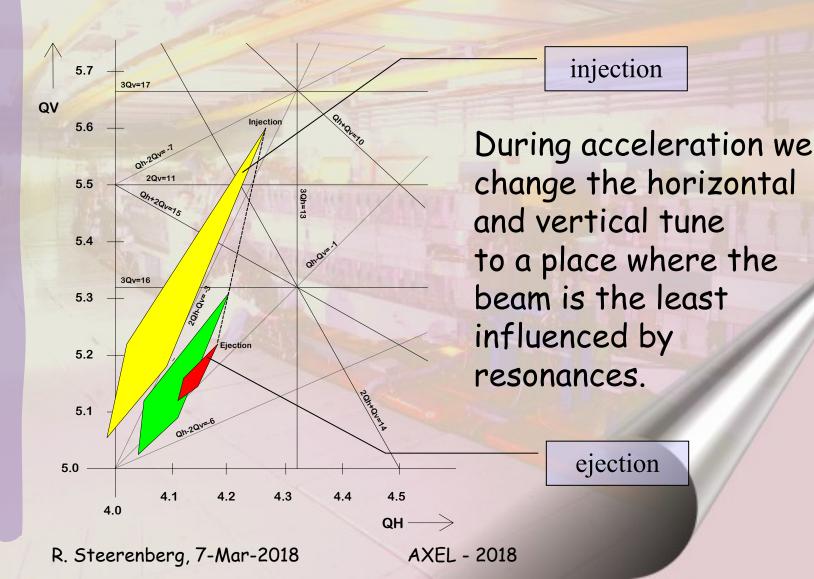
 We can transfer oscillation energy from one pendulum to the other depending on the strength 'k' of the spring

R. Steerenberg, 7-Mar-2018 AXEL - 2018

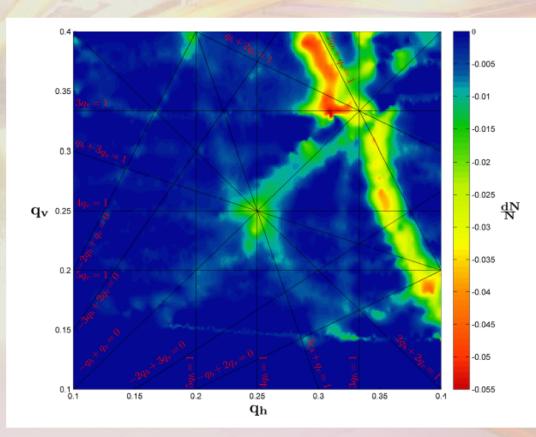
General tune diagram



Realistic tune diagram



Measured tune diagram



Move a large emittance beam around in this tune diagram and measure the beam losses.

Not all resonance lines are harmful.

Conclusion

 There are many things in our machine, which will excite resonances:

- The magnets themselves
- Unwanted higher order field components in our magnets
- ✓ Tilted magnets
- Experimental solenoids (LHC experiments)

✓ The trick is to reduce and compensate these effects as much as possible and then find some point in the tune diagram where the beam is stable.

Questions...,Remarks...?

