AXEL-2018
 Introduction to Particle Accelerators

Lattice calculations:

\checkmark Lattices
\checkmark Tune Calculations
\checkmark Dispersion
\checkmark Momentum Compaction
\checkmark Chromaticity
\checkmark Sextupoles

A quick recap

\checkmark We solved Hill's equation, which led us to the definition of transverse emittance and allowed us to describe particle motion in transverse phase space in terms of β, α, etc...
\checkmark We constructed the Transport Matrices corresponding to drift spaces and quadrupoles.
\checkmark Now we must combine these matrices with the solution of Hill's equation to evaluate β, a, etc...

Matrices \& Hill's equation

\checkmark We can multiply the matrices of our drift spaces and quadrupoles together to form a transport matrix that describes a larger section of our accelerator.
\checkmark These matrices will move our particle from one point $\left(x\left(s_{1}\right), x^{\prime}\left(s_{1}\right)\right)$ on our phase space plot to another $\left(x\left(s_{2}\right), x^{\prime}\left(s_{2}\right)\right)$, as shown in the matrix equation below.

$$
\binom{x\left(s_{2}\right)}{x^{\prime}\left(s_{2}\right)}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x\left(s_{1}\right)}{x^{\prime}\left(s_{1}\right)}
$$

\checkmark The elements of this matrix are fixed by the elements through which the particles pass from point s_{1} to point s_{2}.
\checkmark However, we can also express (x, x^{\prime}) as solutions of Hill's equation.

$$
x=\sqrt{\varepsilon \cdot \beta} \cos \phi \quad \text { and } \quad x^{\prime}=-\alpha \sqrt{\varepsilon / \beta} \cos \phi-\sqrt{\varepsilon / \beta} \sin \phi
$$

Matrices \& Hill's s equation (2)

$x^{\prime}=-\alpha \sqrt{\varepsilon / \beta} \cos (\mu+\phi)-\sqrt{\varepsilon / \beta} \sin (\mu+\phi)$
$x^{\prime}=-\alpha \sqrt{\varepsilon / \beta} \cos \phi-\sqrt{\varepsilon / \beta} \sin \phi$
\checkmark Assume that our transport matrix describes a complete turn around the machine.
\checkmark Therefore: $\beta\left(s_{2}\right)=\beta\left(s_{1}\right)$
\checkmark Let μ be the change in betatron phase over one complete turn.
\checkmark Then we get for $x\left(s_{2}\right)$:

$$
x\left(s_{2}\right)=\sqrt{\varepsilon \cdot \beta} \cos (\mu+\phi)=a \sqrt{\varepsilon \cdot \beta} \cos \phi-b \alpha \sqrt{\varepsilon / \beta} \cos \phi-b \sqrt{\varepsilon / \beta} \sin \phi
$$

Matrices \& Hill's equation (3)

\checkmark So, for the position x at $s 2$ we have...

$$
\sqrt{\varepsilon \cdot \beta} \cos (\mu+\phi)=a \sqrt{\varepsilon \cdot \beta} \cos \phi-b \alpha \sqrt{\varepsilon / \beta} \cos \phi-b \sqrt{\varepsilon / \beta} \sin \phi
$$

$\cos \phi \cos \mu-\sin \phi \sin \mu$
\checkmark Equating the 'sin' terms gives: $-\sqrt{\varepsilon . \beta} \sin \mu \sin \phi=-b \sqrt{\varepsilon / \beta} \sin \phi$
\checkmark Which leads to: $b=\beta \sin \mu$
\checkmark Equating the 'cos' terms gives:

$$
\sqrt{\varepsilon . \beta} \cos \mu \cos \phi=a \sqrt{\varepsilon . \beta} \cos \phi-\alpha \sqrt{\varepsilon . \beta} \sin \mu \cos \phi
$$

\checkmark Which leads to: $a=\cos u+\alpha \sin \mu$
\checkmark We can repeat this for c and d.

Matrices \& Twiss parameters

\checkmark Remember previously we defined:
\checkmark These are called TWISS parameters

\checkmark Remember also that μ is the total betatron phase advance over one complete turn is.

$$
Q=\frac{\mu}{2 \pi}
$$

Number of betatron oscillations per turn
\checkmark Our transport matrix becomes now:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right)
$$

R. Steerenberg, 6-Mar-2018

AXEL-2018

Lattice parameters

$$
\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right)
$$

\checkmark This matrix describes one complete turn around our machine and will vary depending on the starting point (s).
\checkmark If we start at any point and multiply all of the matrices representing each element all around the machine we can calculate a, β, γ and μ for that specific point, which then will give us $\beta(s)$ and Q
\checkmark If we repeat this many times for many different initial positions (s) we can calculate our Lattice Parameters for all points around the machine.

Lattice calculations and codes

\checkmark Obviously $\mu(\operatorname{or} Q)$ is not dependent on the initial position ' s ', but we can calculate the change in betatron phase, $\mathrm{d} \mu$, from one element to the next.
\checkmark Computer codes like "MAD" or "Transport" vary lengths, positions and strengths of the individual elements to obtain the desired beam dimensions or envelope ' $\beta(s)$ ' and the desired 'Q'.
\checkmark Often a machine is made of many individual and identical sections (FODO cells). In that case we only calculate a single cell and not the whole machine, as the the functions β (s) and $\mathrm{d} \mu$ will repeat themselves for each identical section.
\checkmark The insertion sections have to be calculated separately.

The $\beta(s)$ and Q relation.

$\checkmark Q=\frac{\mu}{2 \pi}$, where $\mu=\Delta \Phi$ over a complete turn
\checkmark But we also found:
$\frac{d \phi(s)}{d s}=\frac{1}{\beta(s)}$
\checkmark This leads to:

\checkmark Increasing the focusing strength decreases the size of the beam envelope (β) and increases Q and vice versa.

Tune corrections

\checkmark What happens if we change the focusing strength slightly?
\checkmark The Twiss matrix for our 'FODO' cell is given by:
$\left(\begin{array}{cc}\cos \mu+\alpha \sin \mu & \beta \sin \mu \\ -\gamma \sin \mu & \cos \mu-\alpha \sin \mu\end{array}\right)$
\checkmark Add a small QF quadrupole, with strength dK and length ds.
\checkmark This will modify the 'FODO' lattice, and add a horizontal focusing term:

$$
\left(\begin{array}{cc}
1 & 0 \\
-d k d s & 1
\end{array}\right)
$$

$$
d k=\frac{d K}{(B \rho)}
$$

$$
f=\frac{(B \rho)}{d K d s}
$$

\checkmark The new Twiss matrix representing the modified lattice is:
$\left(\begin{array}{cc}1 & 0 \\ -d k d s & 1\end{array}\right)\left(\begin{array}{cc}\cos \mu+\alpha \sin \mu & \beta \sin \mu \\ -\gamma \sin \mu & \cos \mu-\alpha \sin \mu\end{array}\right)$

Tune corrections (2)

\checkmark This gives $\left(\begin{array}{cc}\cos \mu+\alpha \sin \mu & \beta \sin \mu \\ -d k d s(\cos \mu+\sin \mu)-\gamma \sin \mu & -d k d s \beta \sin \mu+\cos \mu-\alpha \sin \mu\end{array}\right)$
\checkmark This extra quadrupole will modify the phase advance μ for the FODO cell.

New phase advance

$$
\mu_{1}=\mu+\mathrm{d} \mu
$$

Change in phase advance
\checkmark If $\mathrm{d} \mu$ is small then we can ignore changes in β
\checkmark So the new Twiss matrix is just:

$$
\left(\begin{array}{cc}
\cos \mu_{1}+\alpha \sin \mu_{1} & \beta \sin \mu_{1} \\
-\gamma \sin \mu_{1} & \cos \mu_{1}-\alpha \sin \mu_{1}
\end{array}\right)
$$

Tune corrections (3)

\checkmark These two matrices represent the same FODO cell therefore:
$\left(\begin{array}{cc}\cos \mu+\alpha \sin \mu & \beta \sin \mu \\ -d k d s(\cos \mu+\sin \mu)-\gamma \sin \mu & -d k d s \beta \sin \mu+\cos \mu-\alpha \sin \mu\end{array}\right)$
\checkmark Which equals:

$$
\left(\begin{array}{cc}
\cos \mu_{1}+\alpha \sin \mu_{1} & \beta \sin \mu_{1} \\
-\gamma \sin \mu_{1} & \cos \mu_{1}-\alpha \sin \mu_{1}
\end{array}\right)
$$

\checkmark Combining and compare the first and the fourth terms of these two matrices gives:

$$
2 \cos \mu_{1}=2 \cos \mu-\mathrm{dk} d \mathrm{ds} \beta \sin \mu
$$

Only valid for change in $b \ll$

Tune corrections (4)

Remember $\mu_{1}=\mu+\mathrm{d} \mu$ and $\mathrm{d} \mu$ is small
$2 \cos \mu-2 \sin \mu d \mu$ $2 \sin \mu d \mu=d k d s \beta \sin \mu$

In the horizontal plane this is a QF
$d \mu=\frac{1}{2} d k d s \beta \quad$,but: $\mathrm{dQ}=\mathrm{d} \mu / 2 \pi$

$$
d Q h=+\frac{1}{4 \pi} d k . d s . \beta h
$$

If we follow the same reasoning for both transverse planes for both QF and QD quadrupoles

Tune corrections (5)

Let $\mathbf{d k}_{\mathbf{F}}=\mathbf{d k}$ for $\mathbf{Q F}$ and $\mathbf{d k}_{\mathbf{D}}=\mathbf{d k}$ for $\mathbf{Q D}$

$$
\beta_{\mathrm{hF}}, \beta_{\mathrm{vF}}=\beta \text { at } \mathbf{Q F} \text { and } \beta_{\mathrm{hD}}, \boldsymbol{\beta}_{\mathrm{vD}}=\beta \text { at } \mathbf{Q D}
$$

Then:

$$
\binom{d Q v}{d Q h}=\left(\begin{array}{ll}
\frac{1}{4 \pi} \beta_{v D} & \frac{-1}{4 \pi} \beta_{v F} \\
\frac{-1}{4 \pi} \beta_{h D} & \frac{1}{4 \pi} \beta_{h F}
\end{array}\right)\binom{d k_{D} d s}{d k_{F} d s}
$$

This matrix relates the change in the tune to the change in strength of the quadrupoles.
We can invert this matrix to calculate change in quadrupole field needed for a given change in tune

Dispersion (1)

\checkmark Until now we have assumed that our beam has no energy or momentum spread:

$$
\frac{\Delta E}{E}=0 \text { and } \frac{\Delta p}{p}=0
$$

\checkmark Different energy or momentum particles have different radii of curvature (ρ) in the main dipoles.
\checkmark These particles no longer pass through the quadrupoles at the same radial position.
\checkmark Quadrupoles act as dipoles for different momentum particles.
\checkmark Closed orbits for different momentum particles are different.
\checkmark This horizontal displacement is expressed as the dispersion function $D(s)$
$\checkmark D(s)$ is a function of ' s ' exactly as $\beta(s)$ is a function of ' s '

Dispersion (2)

\checkmark The displacement due to the change in momentum at any position (s) is given by:

$$
\Delta x(s)=D(s) \cdot \frac{\Delta p}{p}
$$

Local radial displacement due to momentum spread
$\checkmark \underline{D}(s)$ the dispersion function, is calculated from the lattice, and has the unit of meters.
\checkmark The beam will have a finite horizontal size due to it's momentum spread.
\checkmark In the majority of the cases we have no vertical dipoles, and so $D(s)=0$ in the vertical plane.

Momentum compaction factor

\checkmark The change in orbit with the changing momentum means that the average length of the orbit will also depend on the beam momentum.
\checkmark This is expressed as the momentum compaction factor, $\underline{a}_{\mathrm{p}}$ where:

$$
\frac{\Delta r}{r}=\alpha_{p} \frac{\Delta p}{p}
$$

$\checkmark \underline{a}_{p}$ tells us about the change in the length of radius of the closed orbit for a change in momentum.

Chromaticity

\checkmark The focusing strength of our quadrupoles depends on the beam momentum, ' p '

$$
k=\frac{d B y}{d x} \times \frac{1}{B \rho} \quad 3.3356(p
$$

\checkmark Therefore a spread in momentum causes a spread in focusing strength

$$
\frac{\Delta k}{k}=-\frac{\Delta p}{p}
$$

\checkmark But Q depends on the ' k ' of the quadrupoles

$$
\frac{\Delta Q}{Q} \alpha \frac{\Delta p}{p} \longrightarrow \frac{\Delta Q}{Q}=\xi \frac{\Delta p}{p}
$$

\checkmark The constant here is called : Chromaticity

Chromaticity visualized

\checkmark The chromaticity relates the tune spread of the transverse motion with the momentum spread in the beam.

R. Steerenberg, 6-Mar-2018

AXEL-2018

Chromaticity calculated

\checkmark This term is the Chromaticity ξ
\checkmark To correct this tune spread we need to increase the quadrupole focusing strength for higher momentum particles, and decrease it for lower momentum particles.
\checkmark This we will obtain using a Sextupole magnet

Sextupole Magnets

\checkmark Conventional Sextupole from LEP, but looks similar for other 'warm' machines.
$\checkmark \sim 1$ meter long and a few hundreds of kg.
\checkmark Correction Sextupole of the LHC
$\checkmark 11 \mathrm{~cm}, 10 \mathrm{~kg}, 500 \mathrm{~A}$ at 2 K for a field of $1630 \mathrm{~T} / \mathrm{m}^{2}$
R. Steerenberg, 6-Mar-2018

Chromaticity correction

\checkmark Vertical magnetic field versus horizontal displacement in a quadrupole and a sextupole.

Chromaticity correction (2)

\checkmark The effect of the sextupole field is to increase the magnetic field of the quadrupoles for the positive ' x ' particles and decrease the field for the negative ' x ' particles.
\checkmark However, the dispersion function, $D(s)$, describes how the radial position of the particles change with momentum.
\checkmark Therefore the sextupoles will alter the focusing field seen by the particles as a function of their momentum.
\checkmark This we can use to compensate the natural chromaticity of the machine.

Sextupole \& Chromaticity

\checkmark In a sextupole for $y=0$ we have a field $B y=C . x^{2}$
\checkmark Now calculate ' k ' the focusing gradient as we did for a quadrupole:

$$
k=\frac{1}{(B \rho)} \frac{d B_{y}}{d x}
$$

\checkmark Using $B_{y}=C x^{2}$ which after differentiating gives $\frac{d B_{y}}{d x}=2 C x$
\checkmark For k we now write $k=\frac{1}{(B \rho)} 2 C x$
\checkmark We conclude that ' k ' is no longer constant, as it depends on ' x '
\checkmark So for a Δx we get $\Delta k=\frac{2 C}{(B \rho)} \Delta x$ and we know that $\Delta x=D(s) \frac{\Delta p}{p}$
\checkmark Therefore

$$
\Delta k=2 C \times \frac{D(s)}{(B \rho)} \times \frac{\Delta p}{p}
$$

Sextupole \& Chromaticity

\checkmark We know that the tune changes with:

\checkmark Where: $d s=$ sextupole length and $d k=\Delta k=2 C \times \frac{D(s)}{(B \rho)} \times \frac{\Delta p}{p}$
\checkmark Remember $B=C \cdot x^{2}$ with $C=\frac{1}{2} \frac{d^{2} B y}{d x^{2}}$
\checkmark The effect of a sextupole with length I on the particle tune Q as a function of $\Delta p / p$ is given by:

$$
\frac{\Delta Q}{Q}=\frac{1}{4 \pi} \ell \beta(s) \frac{d^{2} B y}{d x^{2}} \frac{D(s)}{(B \rho) Q} \frac{\Delta p}{p}
$$

\checkmark If we can make this term exactly balance the natural chromaticity then we will have solved our problem.
R. Steerenberg, 6-Mar-2018 AXEL-2018

Sextupole \& Chromaticity (2)

\checkmark There are two chromaticities:
\checkmark horizontal $\rightarrow \xi_{h}$
\checkmark vertical $\rightarrow \xi_{v}$
\checkmark However, the effect of a sextupole depends on $\beta(s)$, which varies around the machine
\checkmark Two types of sextupoles are used to correct the chromaticity.
\checkmark One (SF) is placed near QF quadrupoles where β_{h} is large and β_{v} is small, this will have a large effect on ξ_{h}
\checkmark Another (SD) placed near QD quadrupoles, where β_{v} is large and β_{h} is small, will correct ξ_{v}
\checkmark Also sextupoles should be placed where $D(s)$ is large, in order to increase their effect, since Δk is proportional to $D(s)$

Questions....,Remarks...?

