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CERN Accelerators
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The energies in the CERN 
accelerators range from
100 keV to 6.5 TeV.
To do this we increase the 
beam energy in a staged 
way using 5 different 
accelerators.



Time Structure

Classical Filling of the LHC with Protons
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Relativity
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Energy & Momentum
Einstein�s relativity formula:
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The Units we use for Energy
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The unit eV is too small to be used today, we 
use:

1 KeV = 103, MeV = 106, GeV = 109, TeV = 1012

• The energy acquired by 
an electron in a potential 
of 1 Volts is defined as 
being 1 eV



Energy: eV versus Joules

The unit most commonly used for Energy is Joules [J]

In accelerator and particle physics we talk about 
eV…!?

The energy acquired by an electron in a potential of    
1 Volt is defined as being 1 eV

1 eV is 1 elementary charge �pushed� by 1 Volt.

1 eV = 1.6 x 10-19 Joules
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Units: Energy & Momentum (2)

However:

Therefore the units for momentum are GeV/c…etc.

Attention:
when β=1 energy and momentum are equal

when β<1 the energy and momentum are not equal
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Energy

Momentum



Units: Example PS injection 

ü Kinetic energy at injection Ekinetic = 1.4 GeV
ü Proton rest energy E0=938.27 MeV
ü The total energy is then: E = Ekinetic + E0 =2.34 GeV
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E=gü We know that ,which gives γ = 2.4921

ü We can derive 2

11
g

b -= ,which gives β = 0.91597

ü Using we get p = 2.14 GeV/c

üIn this case: Energy ≠ Momentum



Accelerator co-ordinates

ü We can speak about a: 

Rotating Cartesian Co-ordinate System
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It travels on the 
central orbit

Vertical
Horizontal

Longitudinal



Magnetic rigidity
ü The force evB on a charged particle moving with velocity v in a 

dipole field of strength B is equal to it�s mass multiplied by 
it�s acceleration towards the centre of it�s circular path.
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ü As a formula this is:

ü Which can be written as: Momentum
p=mv

ü Bρ is called the magnetic rigidity, and if we put in all the 
correct units we get:

Bρ = 33.356·p [KG·m] = 3.3356·p [T·m]  (if p is in [GeV/c])

Like for a stone 
attached to a 
rotating rope

e
p

e
mvB ==r

mvevBF ==
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2 Radius of 
curvature



Some LHC figures
ü LHC circumference = 26658.883 m

ü Therefore the radius r = 4242.9 m

üThere are 1232 main dipoles to make 360˚
ü This means that each dipole deviates the beam by only 0.29 ˚

üThe dipole length = 14.3 m
ü The total dipole length is thus 17617.6 m, which occupies 

66.09 % of the total circumference

üThe bending radius ρ is therefore
ü ρ = 0.6609 x 4242.9 m à ρ = 2804 m
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Dipole magnet
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ü A dipole with a uniform dipolar field deviates a particle by an 
angle θ.

ü The deviation angle θ depends on the length L and the 
magnetic field B.

ü The angle θ can be calculated:

ü If θ is small:
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A Real Dipole Magent
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Two particles in a dipole field
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Particle A

Particle B

ü Lets unfold these circles……

ü What happens with two particles that travel in a dipole field 
with different initial angles, but with equal initial position and 
equal momentum ?

ü Assume that Bρ is the same for both particles.



The 2 trajectories unfolded
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ü Particle B oscillates around particle A.
ü This type of oscillation forms the basis of all transverse 

motion in an accelerator.
ü It is called �Betatron Oscillation�

ü The horizontal displacement of particle B with respect to 
particle A.

Particle B
Particle A
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�Stable� or �unstable� motion ?
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ü What can we say about the vertical motion  in the same 
simplified accelerator ? Is it �stable� or �unstable� and why ?

ü Since the horizontal trajectories close we can say that the 
horizontal motion in our simplified accelerator with only a 
horizontal dipole field is �stable�

ü What can we do to make this motion stable ?

ü We need some element that �focuses� the particles back to 
the reference trajectory.

ü This extra focusing can be done using:

Quadrupole magnets



Quadrupole Magnet
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ü A Quadrupole has 4 poles, 2 north 
and 2 south

ü There is no magnetic field
along the central axis.          

ü They are symmetrically 
arranged around the 
centre of the magnet

Magnetic 
field

Hyperbolic contour
x · y = constant



A Real Quadrupole Magnet
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Quadrupole fields
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Magnetic 
field

ü The �normalised gradient�, k is defined as:
( ) )( 2-m
B
K
r

ü On the x-axis (horizontal) the field 
is vertical and given by:

By ∝x
ü On the y-axis (vertical) the 

field is horizontal and given 
by:

Bx ∝ y

ü The field gradient, K is defined 
as: ( )

dx
Byd ( )1-Tm



Types of quadrupoles
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ü It focuses the beam horizontally
and defocuses the beam vertically.

Force on 
particles

ü This is a:
Focusing Quadrupole (QF)

ü Rotating this magnet by 90º will give a:

Defocusing Quadrupole (QD)



Focusing and Stable motion
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ü Using a combination of focusing (QF) and defocusing (QD) 
quadrupoles solves our problem of �unstable� vertical motion.

ü It will keep the beams focused in both planes when the 
position in the accelerator, type and strength of the 
quadrupoles are well chosen.

ü By now our accelerator is composed of:
ü Dipoles, constrain the beam to some closed path (orbit).
ü Focusing and Defocusing Quadrupoles, provide horizontal and 

vertical focusing in order to constrain the beam in transverse 
directions.

ü A combination of focusing and defocusing sections that is 
very often used is the so called: FODO lattice.

ü This is a configuration of magnets where focusing and 
defocusing magnets alternate and are separated by non-
focusing drift spaces.



FODO cell
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ü The �FODO� cell is defined as follows:

�FODO� cell

QF QD QF

Or like this……Centre of
first QF

Centre of 
second QF

L1 L2

QF QD QF



A Real Machine
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The mechanical equivalent
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ü The gutter below illustrates how the particles in our 
accelerator behave due to the quadrupolar fields.

ü Whenever a particle beam diverges 
too far away from the central orbit 
the quadrupoles focus them back 
towards the central orbit.

ü How can we represent the 
focusing gradient of a 
quadrupole in this 
mechanical equivalent ?



The particle characterized
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ü A particle during its transverse motion in our accelerator is 
characterized by:
ü Position or displacement from the central orbit.
ü Angle with respect to the central orbit.

x = displacement
x� = angle = dx/ds

ü This is a motion with a constant restoring force, like in the 
first lecture on differential equations, with the pendulum

ds

x�

x

dx

x s



Hill�s equation
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ü These betatron oscillations exist in both horizontal and 
vertical planes. 

ü The number of betatron oscillations per turn is called the 
betatron tune and is defined as Qx and Qy.

ü Hill�s equation describes this motion mathematically
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2

2
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ü If the restoring force, K is constant in �s� then this is just  
a Simple Harmonic Motion. 

ü �s� is the longitudinal displacement around the accelerator.



Hill�s equation (2)
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ü In a real accelerator K varies strongly with �s�.
ü Therefore we need to solve Hill�s equation for K varying as a 

function of �s�

ü What did we conclude on the mechanical equivalent 
concerning the shape of the gutter……?

ü How is this related to Hill�s equation……?
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Questions….,Remarks…?
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Relativity,
Energy & units

Dipoles, Quadrupoles, 
FODO cells

Others……

Hill�s equation


