AXEL-2018 Introduction to Particle Accelerators

Transverse optics 1:
\checkmark Relativity, Energy \& Units
\checkmark Accelerator co-ordinates
\checkmark Magnets and their configurations
\checkmark Hill's equation

Rende Steerenberg (BE/OP) 5 March 2018

CERN Accelerators

Classical Filling of the LHC with Protons

Energy \& Trains
Time Structure
Beam Brightness

Energy \& Momentum

\# Einstein's relativity formula: $E=m c^{2}$
\# For a mass at rest this will be: $\begin{array}{ll}E_{0}=m_{0} c^{2} & \text { Rest mass } \\ \text { Rest energy }\end{array}$
\# Define: $\gamma=\frac{E}{E}$ As being the ratio between the total energy and the rest energy
\# Then the mass of a moving particle is: $m=\gamma m_{0}$
\# Define: $\beta=\frac{v}{c}$, then we can write: $\beta=\frac{m v c}{m c^{2}}$
\# $p=m v$, which is always true and gives:

$$
\beta=\frac{p c}{E} \quad \text { or } \quad p=\frac{E \beta}{c}
$$

R. Steerenberg, 5-Mar-2018

The Units we use for Energy

- The energy acquired by an electron in a potential of 1 Volts is defined as being 1 eV

\# The unit eV is too small to be used today, we use:

$$
1 \mathrm{KeV}=10^{3}, \mathrm{MeV}=10^{6}, \mathrm{GeV}=10^{9}, \mathrm{TeV}=10^{12}
$$

Energy: eV versus Joules

\# The unit most commonly used for Energy is Joules [J]
\# In accelerator and particle physics we talk about eV...!?
\# The energy acquired by an electron in a potential of 1 Volt is defined as being 1 eV
\# 1 eV is 1 elementary charge 'pushed' by 1 Volt. $1 \mathrm{eV}=1.6 \times 10^{-19}$ Joules

Units: Energy \& Momentum (2)

\# However:

Momentum
Energy
\# Therefore the units for momentum are $\mathrm{GeV} / \mathrm{c}$...etc.

Attention:
when $\beta=1$ energy and momentum are equal when $\beta<1$ the energy and momentum are not equal
R. Steerenberg, 5-Mar-2018

AXEL-2018

Units: Example PS injection

\checkmark Kinetic energy at injection $E_{\text {kinetic }}=1.4 \mathrm{GeV}$
\checkmark Proton rest energy $E_{0}=938.27 \mathrm{MeV}$
\checkmark The total energy is then: $E=E_{\text {kinetic }}+E_{0}=2.34 \mathrm{GeV}$
\checkmark We know that $\gamma=\frac{E}{E_{0}}$, which gives $\gamma=2.4921$
\checkmark We can derive $\beta=\sqrt{1-\frac{1}{\gamma^{2}}}$, which gives $\beta=0.91597$
\checkmark Using $p=\frac{E \beta}{c}$ we get $\mathrm{p}=2.14 \mathrm{GeV} / \mathrm{c}$
\checkmark In this case: Energy \neq Momen Im
R. Steerenberg, 5-Mar-2018

Accelerator co-ordinates

\checkmark We can speak about a :
Rotating Cartesian Co-ordinate System

Magnetic rigidity

\checkmark The force evB on a charged particle moving with velocity v in a dipole field of strength B is equal to it's mass multiplied by it's acceleration towards the centre of it's circular path.
\checkmark As a formula this is:
Like for a stone attached to a rotating rope
\checkmark Which can be written as:

$$
B \rho=\frac{m v}{e}=\frac{p}{e} \quad \begin{gathered}
\text { Momentum } \\
\mathrm{p}=\mathrm{mv}
\end{gathered}
$$

$\checkmark \underline{B} \rho$ is called the magnetic rigidity, and if we put in all the correct units we get:

$$
B \rho=33.356 \cdot p[K G \cdot m]=3.3356 \cdot p[T \cdot m] \text { (if } p \text { is in }[\mathrm{GeV} / \mathrm{c}] \text {) }
$$

Some LHC figures

\checkmark LHC circumference $=26658.883 \mathrm{~m}$
\checkmark Therefore the radius $r=4242.9 \mathrm{~m}$
\checkmark There are 1232 main dipoles to make 360° \checkmark This means that each dipole deviates the beam by only 0.29°
\checkmark The dipole length $=14.3 \mathrm{~m}$
\checkmark The total dipole length is thus 17617.6 m , which occupies 66.09 \% of the total circumference
\checkmark The bending radius ρ is therefore $\checkmark \rho=0.6609 \times 4242.9 \mathrm{~m} \rightarrow \rho=2804 \mathrm{~m}$

Dipole magnet

\checkmark A dipole with a uniform dipolar field deviates a particle by an angle θ.
\checkmark The deviation angle θ depends on the length L and the magnetic field B.
\checkmark The angle θ can be calculated:

$$
\sin \left(\frac{\theta}{2}\right)=\frac{L}{2 \rho}=\frac{1}{2} \frac{L B}{(B \rho)}
$$

\checkmark If θ is small:

$$
\sin \left(\frac{\theta}{2}\right)=\frac{\theta}{2}
$$

\checkmark So we can write:

$$
\theta=\frac{L B}{(B \rho)}
$$

R. Steerenberg, 5-Mar-2018

A Real Dipole Magent

R. Steerenberg, 5-Mar-2018

Two particles in a dipole field

\checkmark What happens with two particles that travel in a dipole field with different initial angles, but with equal initial position and equal momentum?

\checkmark Assume that Bp is the same for both particles.
\checkmark Lets unfold these circles......

The 2 trajectories unfolded

\checkmark The horizontal displacement of particle B with respect to particle A.

\checkmark Particle B oscillates around particle A.
\checkmark This type of oscillation forms the basis of all transverse motion in an accelerator.
\checkmark It is called 'Betatron Oscillation'

'Stable' or 'unstable' motion?

\checkmark Since the horizontal trajectories close we can say that the horizontal motion in our simplified accelerator with only a horizontal dipole field is 'stable'
\checkmark What can we say about the vertical motion in the same simplified accelerator? Is it 'stable' or 'unstable' and why?
\checkmark What can we do to make this motion stable?
\checkmark We need some element that 'focuses' the particles back to the reference trajectory.
\checkmark This extra focusing can be done using:

Quadrupole magnets

Quadrupole Magnet

\checkmark A Quadrupole has 4 poles, 2 north and 2 south
\checkmark They are symmetrically arranged around the centre of the magnet
\checkmark There is no magnetic field along the central axis.

S

Magnetic field

Hyperbolic contour $x \cdot y=$ constant

A Real Quadrupole Magnet

R. Steerenberg, 5-Mar-2018

AXEL-2018

Quadrupole fields

\checkmark The 'normalised gradient', \underline{k} is defined as:
$\frac{K}{(B \rho)}\left(m^{-2}\right)$

Types of quadrupoles

\checkmark Rotating this magnet by 90° will give a:
Defocusing Quadrupole (QD)
R. Steerenberg, 5-Mar-2018

AXEL - 2018

Focusing and Stable motion

\checkmark Using a combination of focusing (QF) and defocusing (QD) quadrupoles solves our problem of 'unstable' vertical motion.
\checkmark It will keep the beams focused in both planes when the position in the accelerator, type and strength of the quadrupoles are well chosen.
\checkmark By now our accelerator is composed of:
\checkmark Dipoles, constrain the beam to some closed path (orbit).
\checkmark Focusing and Defocusing Quadrupoles, provide horizontal and vertical focusing in order to constrain the beam in transverse directions.
\checkmark A combination of focusing and defocusing sections that is very often used is the so called: FODO lattice.
\checkmark This is a configuration of magnets where focusing and defocusing magnets alternate and are separated by nonfocusing drift spaces.

FODO cell

\checkmark The 'FODO' cell is defined as follows:

R. Steerenberg, 5-Mar-2018

AXEL-2018

The mechanical equivalent

\checkmark The gutter below illustrates how the particles in our accelerator behave due to the quadrupolar fields.
\checkmark Whenever a particle beam diverges too far away from the central orbit the quadrupoles focus them back towards the central orbit.
\checkmark How can we represent the focusing gradient of a quadrupole in this mechanical equi ent?

[^0]AXEL - 2018

The particle characterized

\checkmark A particle during its transverse motion in our accelerator is characterized by:
\checkmark Position or displacement from the central orbit.
\checkmark Angle with respect to the central orbit.

\checkmark This is a motion with a constant restoring force, like in the first lecture on differential equations, with the andulum

Hill's equation

\checkmark These betatron oscillations exist in both horizontal and vertical planes.
\checkmark The number of betatron oscillations per turn is called the betatron tune and is defined as Qx and Qy.
\checkmark Hill's equation describes this motion mathematically

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark If the restoring force, K is constant in ' s ' then this is just a Simple Harmonic Motion.
\checkmark ' s ' is the longitudinal displacement around the accelerator.

Hill's equation (2)

\checkmark In a real accelerator K varies strongly with ' s '.
\checkmark Therefore we need to solve Hill's equation for K varying as a function of ' s '

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark What did we conclude on the mechanical equivalent concerning the shape of the gutter......?
\checkmark How is this related to Hill's equation......?

Questions..., Remarks...?

[^0]: R. Steerenberg, 5-Mar-2018

