AXEL-2018 Introduction to Particle Accelerators

Review of basic mathematics: ✓ Vectors & Matrices ✓ Differential equations

Rende Steerenberg (BE/OP) 5 March 2018

Scalars & Vectors

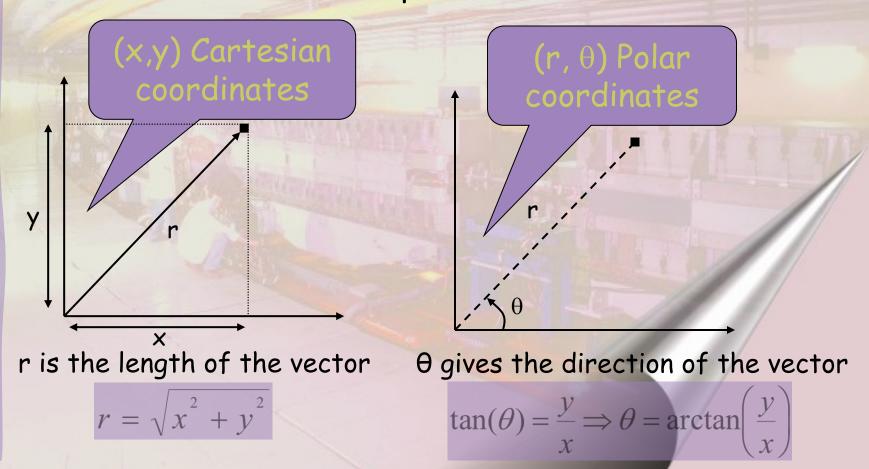
Scalar, a single quantity or value

Vector, (origin,) length, direction

R. Steerenberg, 5-Mar-2018

Coordinate Systems

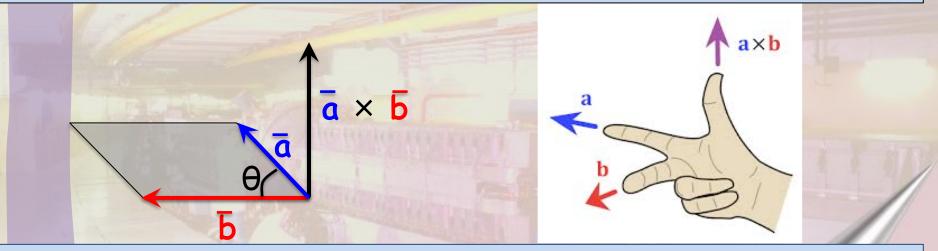
A scalar is a number: 1,2,..-7, 12.5, etc.....
 A vector has 2 or more quantities associated with it.



R. Steerenberg, 5-Mar-2018

Vector Cross Product

 \overline{a} and \overline{b} are two vectors in the in a plane separated by angle θ



The cross product $\overline{a} \times \overline{b}$ is defined by:

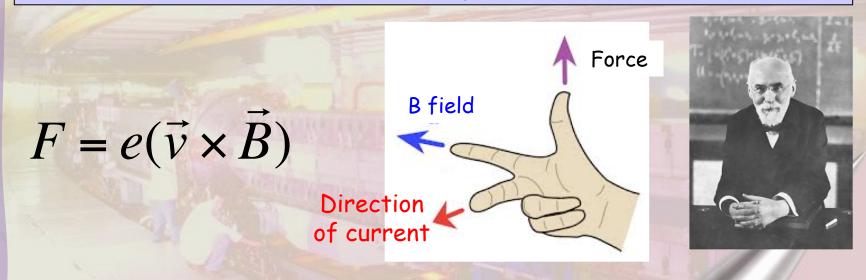
- Direction: $\overline{a} \times \overline{b}$ is perpendicular (normal) on the plane through \overline{a} and \overline{b}
- The length of $\overline{a} \times \overline{b}$ is the surface of the parallelogram formed by \overline{a} and \overline{b}

$$\vec{a} \times \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\theta)$$

R. Steerenberg, 5-Mar-2018

Cross Product & Magnetic Field

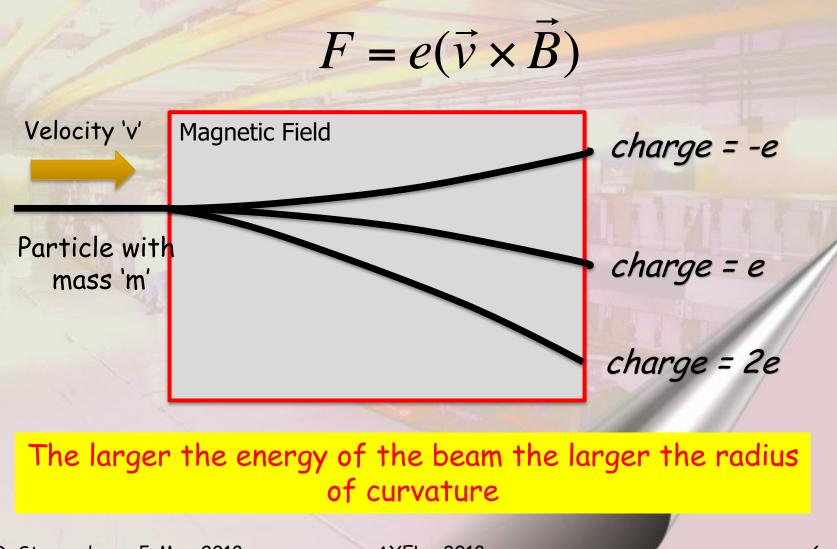
The Lorentz force is a pure magnetic field



The reason why our particles move around our "circular" machines under the influence of the magnetic fields

R. Steerenberg, 5-Mar-2018

Lorentz Force in Action



R. Steerenberg, 5-Mar-2018

Moving for one Point to Another

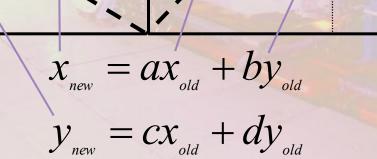
 $\mathbf{A}(x_{old}, y_{old})$

X

ficient way

doing this

 To move from one point (A) to any other point (B) one needs control of both Length and Direction.



2 equations needed !!!

R. Steerenberg, 5-Mar-2018

 $\mathbf{B}(x_{new}, y_{new})$

Defining Matrices (1)

 $x_{new} = ax_{old} + by_{old}$ $y_{new} = cx_{old} + dy_{old}$

Let's write this as <u>one</u> equation:

So, we have:

A and B are <u>Vectors</u> or <u>Matrices</u> Columns
A and B have 2 rows and 1 column
M is a <u>Matrix</u> and has 2 rows and 2 columns

R. Steerenberg, 5-Mar-2018

AXEL - 2018

Rows

new

Defining Matrices (2)

This means that:

This defines the rules for <u>matrix multiplication</u>.
More generally we can thus say that...

which is be equal to: i = ae + bg, j = af + bh, k = ce + dg, l = cf + dh

 $\begin{pmatrix} i & j \\ k & l \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix}$

R. Steerenberg, 5-Mar-2018

Applying Matrices

Let's use what we just learned and move a point around: y1 y 1

x1

x

 X_{2}

 X_{3}

=M1

=M2

y2

x3

3

M1 transforms 1 to 2
M2 transforms 2 to 3
This defines M3=M2M1

y3

2

x2

=M2.M

Matrices & Accelerators

- # But... how does this relate to our accelerators?
- We use matrices to describe the various magnetic elements in our accelerator.
 - The x and y co-ordinates are the position and angle of each individual particle.
 - If we know the position and angle of any particle at one point, then to calculate its position and angle at another point we <u>multiply all the matrices</u> describing the magnetic elements between the two points to give a single matrix
- So, this means that now we are able to calculate the final co-ordinates for any initial pair of particle coordinates, provided all the element matrices are known.

R. Steerenberg, 5-Mar-2018

Unit Matrix

There is a special matrix that when multiplied with an initial point will result in the same final point.

Unit matrix :

$$\begin{pmatrix} x_{new} \\ y_{new} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_{old} \\ y_{old} \end{pmatrix}$$

The result is : $\begin{cases} X_{new} = X_{old} \\ Y_{new} = Y_{old} \end{cases}$

Therefore: The Unit matrix has no effect on x and y

Going back for one Point to Another

- What if we want to go back from a final point to the corresponding initial point?
- # We saw that: $\begin{pmatrix} x_{new} \\ y_{new} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_{old} \\ y_{old} \end{pmatrix}$ or $\overline{B} = M\overline{A}$
- # For the reverse we need another matrix M⁻¹

 $\overline{A} = M^{-1}\overline{B}$

- # Combining the two matrices M and M⁻¹ we can write: $\overline{B} = MM^{-1}\overline{B}$
- # The combination of M and M⁻¹ does have no effect thus: $MM^{-1} = Unit Matrix$
- # M^{-1} is the "inverse" or "reciprocal" matrix of M.

R. Steerenberg, 5-Mar-2018

Inverse or Reciprocal Matrix

If we have: $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, which is a 2×2 matrix.

Then the inverse matrix is calculated by:

$$M^{-1} = \frac{1}{(ad-bc)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

The term (ad - bc) is called the <u>determinate</u>, which is just a <u>number</u> (scalar).

An Accelerator Related Example

- Changing the current in two sets of quadrupole magnets (F & D) changes the horizontal and vertical tunes (Q_h & Q_v).
 This can be expressed by the following metric relationship:
- # This can be expressed by the following matrix relationship:

$$\begin{pmatrix} \Delta Q_h \\ \Delta Q_v \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \Delta I_F \\ \Delta I_D \end{pmatrix} \quad \text{or} \quad \overline{\Delta Q} = M \overline{\Delta I}$$

- # Change I_F then I_D and measure the changes in Q_h and Q_v
- # Calculate the matrix M
- # Calculate the inverse matrix M⁻¹
- # Use now M^{-1} to calculate the current changes (I_F and I_D) needed for any required change in tune (Q_h and Q_v).

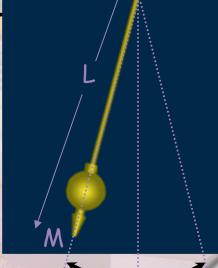
$$\overline{\Delta I} = M^{-1} \overline{\Delta Q}$$

R. Steerenberg, 5-Mar-2018

Differential Equations

Let's use a pendulum as an example.

The length of the Pendulum is L.
It has mass M attached to it.
It moves back and forth under the influence of gravity.



Let's try to find an equation that describes the motion the mass M makes.

This equation will be a **Differential Equation**

Establish a Differential Equation

The distance from the centre = $L\theta$ (since θ is small)

The <u>velocity</u> of mass M is: v =

The <u>acceleration</u> of mass M is:

Newton: Force = mass x acceleration

$$-Mg\sin\theta = M\frac{d^2(L\theta)}{dt^2}$$

Restoring force due to gravity = -Mgsin0 _____ (force opposes motion)

Mg

#

H

 $\frac{d^2(\theta)}{dt^2} + \left(\frac{g}{L}\right)\theta = 0$ θ is small L is constant

R. Steerenberg, 5-Mar-2018

M

Solving the Differential Equation (1)

$$\frac{d^{2}(\theta)}{dt^{2}} + \begin{pmatrix} g \\ L \end{pmatrix} \theta = 0$$

This differential equation describes the motion of a pendulum at small amplitudes.

Find a solution.....Try a good "guess"...... $\theta = A\cos(\omega t)$
Oscillation amplitude

Differentiate our guess (twice)

 $\frac{d(\theta)}{dt} = -A\omega\sin(\omega t)$ And $\frac{d^{2}(\theta)}{dt^{2}} = -A\omega^{2}\cos(\omega t)$

Put this and our "guess" back in the original Differential equation.

 $-\omega^{2}\cos(\omega t) + (\frac{g}{L})\cos(\omega t) = 0$

Solving the Differential Equation (2)

So we have to find the solution for the following equation:

$$-\omega^2 \cos(\omega t) + \left(\frac{g}{L}\right) \cos(\omega t) = 0$$

Solving this equation gives: $\omega =$

The final solution of our differential equation, describing the motion of a pendulum is as we expected :

$$\theta = A \cos \sqrt{\frac{g}{L}}t$$
Oscillation amplitude Oscillation frequency
R. Steerenberg, 5-Mar-2018 AXEL - 2018

Differential Equation & Accelerators

$$\frac{d^2(x)}{dt^2} + (K)x = 0$$

This is the kind of differential equation that will be used to describe the motion of the particles as they move around our accelerator.

- # As we can see, the solution describes: oscillatory motion
- For any system, where the restoring force is proportional to the displacement, the solution for the displacement will be of the form:

$$x = x_0 \cos(\omega t)$$

The velocity will be given by:

$$\frac{dx}{dt} = -x_{0}\omega\sin(\omega t)$$

R. Steerenberg, 5-Mar-2018

Visualizing the solution

Plot the velocity as a function of displacement:

dx

dt

X₀

$$# x = x_0 \cos(\omega t)$$

#

 \boldsymbol{u}

$$\frac{dx}{dt} = -x_0 \omega \sin(\omega t)$$

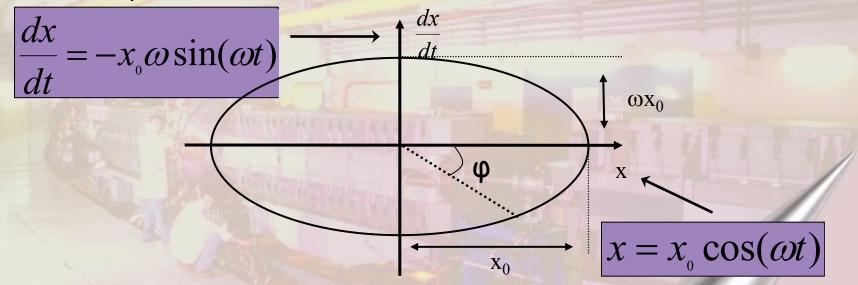
- # It is an ellipse.
- # As wt advances by 2 π it repeats itself.
- # This continues for (ω t + k 2 π), with k=0,±1, ±2,...,.etc

 ωX_0

Х

The solution & Accelerators

How does such a result relate to our accelerator or beam parameters ?



- $\# \phi = \psi t$ is called the <u>phase angle</u> and the ellipse is drawn in the so called <u>phase space diagram</u>.
 - X-axis is normally displacement (position or time).
 - Y-axis is the phase angle or energy.

Questions...,Remarks...?

