Theory versus Experiment Prof. Jorgen D'Hondt Vrije Universiteit Brussel Jodhondt@vub.ac.be # Theory versus Experiment # Dangerous cocktail !!! #### The basics in these lectures #### Part1: "Theory meets experiment" - 1 Our QFT description of Nature is a stochastic one - ② General stochastic distributions in physics - ③ From theoretical to experimental distributions - 4 ... and back: unfolding techniques - ⑤ Examples from the LHC at CERN #### Part 2: "Experiment meets theory" - 1 Experimental aspects to accumulate experimental data - 2 Selection of the dedicated signal - ③ Performing measurements & parameter estimation - 4 Claiming a discovery of new physics or setting limits - ⑤ Examples from the LHC at CERN ## Lecture 1 # "Theory meets experiment" - Stochastic description of Nature Stochastic variables, distributions, examples - 2 General stochastic distributions in physics Bernouilli, Binomial, Poisson, Gaussian, Central Limit Theorem - ③ From theoretical to experimental distributions Nuisance of experiment, convolution, Monte Carlo simulation, some reconstruction techniques - 4 A basic introduction to unfolding techniques - 5 An example from the LHC at CERN ## Deterministic vs Stochastic Particles through an electromagnetic field (example a photonmultiplier tube) $\vec{F} = q \cdot (\vec{E} + \vec{v} \times \vec{B})$ #### **Deterministic** Each "experiment" is predictable (exact) #### Stochastic Set of "experiments" is predictable (distributions) #### The micro-scale Nature is stochastic! Fundamental interactions are described on the level of quantum mechanics which is stochastic. Quantum Field Theory predicts cross-sections and distributions of kinematic variables. • Prediction of the <u>expected</u> amount of events observed in collisions and the <u>expected</u> kinematic distributions. But not the prediction of the exact result of one single experiment. #### Distributions of stochastic variables - A stochastic variable X denotes the outcome of one experiment and usually obtains a real value (\mathbb{R}) after its measurement. - When repeated infinite times in the same conditions, a distribution is obtained (can be discrete or continuous). #### Distributions of stochastic variables - The collection of momenta $\{\mu_k(X)|k=\{1...\infty\}\}$ gives a full description of the distribution $f_X(x)$ - Most distributions in physics have only few free momenta (the others are zero or can be expressed in terms of other momenta) - Definition of expectation value: $E[g(X)] \equiv \int_{\Omega} g(x) f_X(x) dx$ Typical examples of theoretical parameters of a distribution: $$\mu_X \equiv \mu_1(X) = E[X^1] = \int_{\Omega} x^1 f_X(x) dx$$ $$Var[X] \equiv E[X^2] - (E[X])^2 = \int_{\Omega} (x - E[X])^2 f_X(x) dx$$ These parameters are unknown and have to be measured x1) Examples of stochastic variables (X): number of collision events in a dataset of 1/fb, reconstructed value of $m_{t\bar{t}}$ per event, ... ## Distributions in physics Which distributions are relevant to compare theory with experiment in particle physics? #### Binomial distribution Starts from a very simple Bernouilli distribution: the stochastic variable can only take two values (A or B) $$P(A) = 1 - P(B)$$ #### Binomial distribution One parameter to describe the full distribution P(i): N (number of Bernouilli experiments) #### Binomial distribution Typical exercise: in at least 3 layers. A particle detector has an efficiency of 90% per detector layer. How many detector layers do we need to put on top of each other to get a probability of 99% to detect the particle? Detecting the particle means, that we have to "see" the particle Theory versus Experiment - Experimental Techniques in Particle Physics - Jorgen D'Hondt (Vrije Universiteit Brussel) ### Gaussian distribution The most important distribution in physics is the Gaussian one which is a rescaling of a binomial stochastic variable X ~ B(n,p) $$Z = \frac{X(n.p)}{\sqrt{n.p.(1-p)}} \xrightarrow{n \to \infty} f_Z(z) = \frac{1}{\sqrt{2\pi}} exp(-\frac{1}{2}z^2)$$ • General Z ~ N(μ , σ^2) $$f_Z(z) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{1}{2}(\frac{z-\mu}{\sigma})^2) \underbrace{\begin{pmatrix} x & y \\ 0.35 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\$$ ### Poisson distribution Stochastic variable X describes how many events happen in a fixed time interval (eq. how many collisions in 1/fb) ## Central Limit Theorem Consider independent stechastics (X_i) following all a random distribution (x_i) . Each stochastic variable Y being a linear combination of these $$Y = \sum_{i=1}^{n} c(X_i)$$ Will follow a normal distribution (when the variance Var[Y] is not dominated by one variance $Var[X_i]$). $$Y \sim N\left(\sum_{i=1}^{n} c_i E[X_i], \sum_{i=1}^{n} c_i^2 \sigma_{x_i}^2\right)$$ Hence the theory of uncertainties can be developed assuming the measurable stochastic follows a Gaussian distribution. #### Gaussian distribution Estimators are usually linear combinations of stochastic variables, hence follow a Gaussian distribution ### Central Limit Theorem The distributions X_i should not have the same PDF: Our particle detectors are typically complex instruments where particles are reconstructed from several "hits" which are combined into estimators for the four-momentum of the particle. → Gaussian resolution functions ## Response & resolution If I put in my detector a particle with variable value $X=x_{in}$, I will observe it at another value X=x' according to some distribution. 1) the detector granularity Detectors make our life more complicated, but are needed! 1) the detector granularity Detectors make our life more complicated, but are needed! 1) the detector granularity Detectors make our life more complicated, but are needed! The more granular the detector, the more expensive the detector! #### 2 the detector instrument Physics itself can smear the "true" direction or energy of a particle The incoming direction or energy is altered in a stochastic way and the <u>expected behavior</u> can be described by models put in the simulation of collision events at particle detectors. #### granularity + instrument + physics The resolution function describes the stochastic distribution of the observable variable X (eg. p_T) for fixed settings before the measurement. →One can reflect both the variance (resolution) and the bias (response) of the estimator into a <u>response matrix</u>. ## Response matrix ### From TH to EXP distributions Most of the resolution functions R(X,X') are Gaussian $$R(X,X') = \frac{1}{\sqrt{2}} exp\left(-\frac{1}{2}\left(x^2\right)^2\right)$$ and reflect the stochastic aspect of the measurement of X' given the initial "true" value X. erse measured distribution becomes ("convolution") $$g(x') = \int R(x, x') f_X(\mathbf{z}) dx$$ It is the distribution g(x') which is sampled by the experiment Including physics (θ) and detector "nuisance" ($\vec{\alpha}$) parameters $$g(x'|\vec{\alpha}, \vec{\theta}) = \int R(x, x'|\vec{\alpha}) f_X(x|\vec{\theta}) dx$$ ## From TH to EXP distributions We want to know something about the physics model $f_X(x|\theta)$ using a finite amount of measurements of stochastic variable X'. The data of the measurements will be collected into a histogram with a finite amount of bins. In general two options: - ① With simulation which <u>incorporates the stochastic behavior</u> of the response matrix R, we can predict the expectation value in each bin (= the bin content). And compare the data histogram with these expectations which depend on the parameter θ . - When the response matrix R is well-known we can try to inverse the problem and estimate directly $f_X(x|\theta)$. ## Unfolding techniques ("inverse problem") Estimating probability distributions $f_{\gamma}(y)$ with an additional stochastic effect on Y from the measurement process (effect of R), in case when no parametric form is available $f_{Y}(y)$ is an unknown PDF \rightarrow histogram with M bins $$\vec{\mu}_i$$ expectation value $\vec{\mu} = (\mu_1, \dots, \mu_M)$ response function R(x|y) or response matrix R_{ij} = Prob(obs in bin i | true value in bin j) "functional" $$f_{meas}(x) = \underbrace{\int R(x|y).f_{true}(y)dy}$$ "histograms" $$E[\underline{n_i}] \equiv \nu_i = \underbrace{\sum_{i=1}^M R_{ij}\mu_j} \rightarrow E[\vec{n}] = \vec{\nu} =$$ $\sum_{j=1}^{N} R_{jj}$ = Prob(obs anywhere | true value in bin j) = ε_{j} (efficiency) ## Unfolding techniques # Unfolding techniques # Unfolding techniques # Unfolding techniques ullet Now we should invert the equation to estimate $ec{\mu} ightarrow ec{\mu}$ $$E[\vec{n}] = \vec{\nu} = \tilde{R}\vec{\mu} + \vec{\beta} \qquad \Rightarrow \qquad \vec{\mu} = \tilde{R}^{-1} \cdot (\vec{\nu} - \vec{\beta})$$ • Suppose every $\mathbf{n_i}$ has a Poisson distribution, then the maximum likelihood estimator of $\vec{\nu}$ is simply the observed \vec{n} likelihood estimator of $$\nu$$ is simply the observed n $$P(n_i|\lambda=\nu_i)=\frac{\nu_i^{n_i}}{n_i!}e^{-\nu_i} \qquad \hat{\nu}_i=n_i$$ - Hence we have $\hat{\vec{\mu}} = \tilde{R}^{-1} \cdot (\vec{n} \vec{\beta})$ - One can show that this estimator is the most efficient one (i.e. with the smallest variance) among all unbiased estimators - But... # Unfolding techniques We get a dramatic effect... "true" distribution observed distribution - ullet Huge fluctuations because of the fluctuations of $ec{n}$ around $ec{ u}$ - Introduce some bias (systematic uncertainty) to reduce the variance (statistical uncertainty) → regularized unfolding # Regularized Unfolding Still use the same master equation $(\hat{\vec{\mu}}) = \tilde{R}^{-1} \cdot (\hat{\vec{\nu}} - \vec{\beta})$ But adapt the Likelihood in the Maximum Likelihood method $$ln\mathcal{L}(\vec{\nu}|\vec{n}) \longrightarrow ln\mathcal{L}'(\vec{\nu}|\vec{n}) = \alpha ln\mathcal{L}(\vec{\nu}|\vec{n}) + S(\vec{\nu})$$ with α is the regularization parameter and $S(\mu)$ the regularization function. Hence $\hat{\vec{v}} \neq \hat{\vec{v}}_{MaxLik} = \vec{n}$, but the solution of $$\left(\frac{\partial ln\mathcal{L}'(\nu_i|n_i)}{\partial \nu_i}\right)_{\nu_i=\hat{\nu}_i} = 0 \quad \longrightarrow \quad \hat{\nu}_i = \dots$$ Different options for the regularization parameter and function. Examples in eg. arXiv:hep-ex/0208022 and arXiv:hep-ex/0208022 href="mailto:arXiv:1104.2962">arXiv:hep-ex/020802 href="mailto:arXiv:1104.2962">arXiv:arXiv:1104.2962 and arXiv:arXiv:1104.2962 and arXiv:arXiv:1104.2962 and arXiv:arXiv:1104.2962 arXiv:arXiv:arXiv:arXiv:arXiv:arXiv:arXiv:arXiv:arXiv:arXiv:arXiv:arXiv:arXiv:arXiv:arXiv:arXiv:arXiv:arXiv # Regularized Unfolding $$ln\mathcal{L}(\vec{\nu}|\vec{n}) \longrightarrow ln\mathcal{L}'(\vec{\nu}|\vec{n}) = \alpha ln\mathcal{L}(\vec{\nu}|\vec{n}) + S(\vec{\nu})$$ The <u>regularization function</u> needs to smoothen the likelihood. Therefore a good choice could be the mean square of the second derivative. N=2 $S(\vec{\nu}) \sim \sum_{i=1}^{N-2} (-\nu_i + 2 \cdot \nu_{i+1} - \nu_{i+2})^2$ This is related to the amount of curvature in the expectation value of $\vec{\nu}$ versus the measurant X. The value for the <u>regularization parameter</u> is a trade-off between variance and bias. Hence it can be chosen to minimize both simultaneous. $$MSE = \frac{1}{N} \sum_{i=1}^{N} (Var[\hat{\mu}_i] + \hat{b}_i^2)$$ with $b_i = E[\hat{\mu}_i] - \mu_i$ ### Alternative to unfolding Using simulations a simple method exist with multiplicative correction factors. $$\hat{\mu}_i = C_i(n_i - \beta_i) \qquad C_i = \frac{\mu_i^{MC}}{\nu_i^{MC}}$$ simple method does not take into account all correlations The bias of the estimator is $$b_i = \left(rac{\mu_i^{MC}}{ u_i^{MC}} - rac{\mu_i}{ u_i^{sig}} ight) u_i^{sig} \qquad \qquad (u_i^{sig} = u_i - eta_i)$$ Only no bias if the MC simulated model is correct, and the estimators are pulled towards the MC model used for the correction factors C_i ... not good! \rightarrow simply compare \vec{n} directly with $\vec{\nu}$ # Why unfolding? - 1 Comparison between experiments - Comparison with new theories (or other theories which experimentalists have not considered) Unfolding in ROOT: RooUnfold (arXiv:1105.1160) ### Examples from the LHC arXiv:1207.0065 The charge asymmetry A_C in top quark pair events: $$A_C = \frac{N^+ - N^-}{N^+ + N^-}$$ where N^{+/-} reflects the amount of events for which $\Delta |y|=|y_t|-|y_{\bar t}|$ is either positive or negative. #### Addendum: Rivet http://rivet.hepforge.org/ "Rivet is a library and set of programs which produce simulated distributions which can be directly compared to measured data for MC validation and tuning studies. It can also be used without reference data to compare two or more generators to each other for regression testing or tune comparison. The Rivet library contains the tools needed to calculate physical observables from HepMC files or objects, a large set of important experimental analyses, and histogramming tools for data comparison and presentation." # Summary of part 1 # Summary of part 1 #### Theory needs to meet experiment! - 1 Nature at the quantum level is stochastic ... deal with it! - 2 Fundamental physics is reflected in distributions $f_X(x|\theta)$ - ③ Detector nuisance effects: $g(x'|\vec{\alpha}, \vec{\theta}) = \int R(x, x'|\vec{\alpha}) f_X(x|\vec{\theta}) dx$ - (4) The distributions $g(x'|\vec{\alpha},\theta)$ are measurable - ⑤ Unfolding techniques can give you $f_X(x|\theta)$ back... ### Lecture 2 – pre-view #### Lecture 2 #### The basics in these lectures #### Part1: "Theory meets experiment" - Our QFT description of Nature is a stochastic one - ② General stochastic distributions in physics - ③ From theoretical to experimental distributions - 4 ... and back: unfolding techniques - ⑤ Examples from the LHC at CERN #### Part 2: "Experiment meets theory" - ① Experimental aspects to accumulate experimental data - 2 Selection of the dedicated signal - 3 Performing measurements & parameter estimation - 4 Claiming a discovery of new physics or setting limits - ⑤ Examples from the LHC at CERN # "Experiment meets theory" ① Collecting experimental data physics/0311105 From detectors, over triggers to collision data at the LHC - ② Selection of dedicated signals Hypothesis testing, efficiency versus purity, use of Monte Carlo simulation, optimal event selection, significance - ③ Performing measurements Concepts of parameter estimation, counting experiments versus fitting distributions, least-square and maximum likelihood method, Neyman confidence belts (extension to Feldman-Cousins method) - 4 Claiming discovery or setting limits Systematic uncertainties and significance, the CLs method ### The Trigger: general layout #### Signal selection Typically we want to study rare events Need to identify these events! 54.1 GeV/c n = 0.70M(eμ): 86.5 GeV/c² Missing E_T : 80.2 GeV Electron p_T : 50.1 GeV/c $\eta = 0.60$ Jet p_⊤: 55.3 GeV/c CMS $\eta = 2.22$ 163385 Event: 82718301 # Hypothesis testing ``` Signal (H0) Selsign type 1 Background (H1) error type 2 Selock cut ``` ``` "Error of type-1": rejecting a signal event "Error of type-2": accepting a background event or \epsilon_{\text{signal}} = \text{signal efficiency} = \# \text{Sel}_{\text{sign}} / \text{total } \# \text{ signal events} \epsilon_{\text{bck}} = \text{background efficiency} = \# \text{Sel}_{\text{bck}} / \text{total } \# \text{ background events} ``` # Hypothesis testing Where to cut on this variable? For a discovery by counting the number of events, need the largest significance variable Background (H1) type 2 variable Sign : cut-value variable vary the "cut-value" "Error of type-1": rejecting a signal event "Error of type-2": accepting a background event or ϵ_{signal} = signal efficiency = # Sel_{sign} / total # signal events ϵ_{bck} = background efficiency = # Sel_{bck} / total # background events #### Significance The significance is influenced by systematic uncertainties $$g(x'|\vec{\alpha}, \vec{\theta}) = \int R(x, x'|\vec{\alpha}) f_X(x|\vec{\theta}) dx$$ used to obtain the simulated distributions of variable x' The imprecision of the model of R and f_x has to be taken into account when you estimate the background (and signal) rate after the event selection cuts \rightarrow for example an effect of $\Delta_{svst}B$ The significance is the amount of "standard deviations" the signal excess (=S) is above the background level (=B). $$Sign = \frac{S}{\sqrt{Var[B]}} = \frac{S}{\sqrt{B}} \longrightarrow \frac{S}{\sqrt{Var_{stat}[B] + Var_{syst}[B]}} = \frac{S}{\sqrt{B + (\Delta_{syst}B)^2}}$$ Poisson distribution remember: $Var[X] = \sigma_X^2$ # Significance $$Sign = \frac{S}{\sqrt{Var[B]}} = \frac{S}{\sqrt{B}} \longrightarrow \frac{S}{\sqrt{Var_{stat}[B] + Var_{syst}[B]}} = \frac{S}{\sqrt{B + (\Delta_{syst}B)^2}}$$ $$B = 100 \rightarrow \sqrt{B} \rightarrow 10$$ $$S = 30$$ $$\Delta_{syst}B = 0$$ $$\Rightarrow Sign = 3 \text{ "sigma"}$$ $$\Rightarrow Sign = 3 \text{ "sigma"}$$ $$\Rightarrow Sign = 2.1 \text{ "sigma"}$$ # Significance $$Sign = \frac{S}{\sqrt{Var[B]}} = \frac{S}{\sqrt{B}} \longrightarrow \frac{S}{\sqrt{Var_{stat}[B] + Var_{syst}[B]}} = \frac{S}{\sqrt{B + (\Delta_{syst}B)^2}}$$ $$B = 100$$ $$S = 30$$ $$\Delta_{syst}B = 0$$ $$\Rightarrow Sign = 3 \text{ "sigma"}$$ $$\Rightarrow Sign = 3 \text{ "sigma"}$$ $$\Rightarrow Sign = 1.3 \text{ "sigma"}$$ (to Proplan) Multi-Variate Analysis \rightarrow combine variables \vec{x} into a single variable (optimal variable is the Likelihood Ratio variable from the optimal Neyman-Pearson hypothesis test) 1 functional form $f_i(x_i)$ not known because from ∞ events use Monte Carlo simulation to approximate this Multi-Variate Analysis \rightarrow combine variables \vec{x} into a single variable (optimal variable is the Likelihood Ratio variable from the optimal Neyman-Pearson hypothesis test) 2 histograms $h_i(x_i)$ from finite amount of events (normalized & use lots of simulation to get a fine binning) Multi-Variate Analysis \rightarrow combine variables \vec{x} into a single variable (optimal variable is the Likelihood Ratio variable from the optimal Neyman-Pearson hypothesis test) - 3 use histograms to calculate bin-per-bin a Likelihood Ratio - 4 fit these tendencies with an adequate function $\mathcal{LR}_i(x_i)$ Multi-Variate Analysis \rightarrow combine variables \vec{x} into a single variable 5 combined into one variable per event $\mathcal{LR}(\vec{x})$ most optimal variable if the variables x_i are not correlated Multi-Variate Analysis \rightarrow combine variables \vec{x} into a single variable when linearly correlated first rotate the variable space the set of new variables $\vec{X}' = \begin{pmatrix} \tilde{R} \end{pmatrix} \vec{X}$ can be used into a LR method (other MVA methods: Neural Networks, Boosted Decision Trees, Fisher Discriminant, ... <u>MVA</u> in ROOT: http://tmva.sourceforge.net/) #### Now we have the selected data counting experiments study the shape (in general you estimate parameters of the signal) #### Parameter estimation: the basics $$g(\underline{x'}|\vec{\alpha}, \vec{\theta}) = \int R(x, x'|\vec{\alpha}) f_X(x|\vec{\theta}) dx$$ could be one number per experiment, or a set of numbers per experiment number of selected events in data distribution of an observable variable per event construct an estimator which depends on the observed value(s) of x' ... hence the estimator itself one of these is to be estimated is a stochastic variable #### Parameter estimation: the basics The estimator of θ is function of the measurements $\{x'\}$: $\hat{\theta} = F(\{x'\})$ It is a stochastic variable which follows a distribution : $G(\hat{\theta})$ Central Limit Theorem Gaussian distribution The distribution $G(\hat{\theta})$ depends on the value of the physics parameter θ itself. The uncertainty on the estimator is related to the variance of the distribution $G(\hat{\theta})$. But how to quote an uncertainty on the physical parameter θ itself? # Confidence belts (Neyman's method) For each θ_0 , determine the distribution $G(\hat{\theta}|\theta_0)$. Take the central 1- α percent probability. Defines $x_1(\theta_0)$ and $x_2(\theta_0)$. These can be transformed into $\theta_1(x,\alpha)$ and $\theta_2(x,\alpha)$. Now the data value x_{data} provides the 1- α confidence interval for the true value of θ , namely $[\theta_2, \theta_1]$. $$1 - \alpha = P(\theta_2(x_{data}, \alpha) < \theta_{true} < \theta_1(x_{data}, \alpha))$$ #### $1-\alpha$ interval ### Confidence belts (Neyman's method) Simplified with Gaussian distributions of the estimator. The confidence interval becomes symmetric. $$P(x_{data} - \sigma < \theta_{true}) < x_{data} + \sigma) = 68.3\%$$ ### Feldman-Cousins What to do when your measurement hints for a "non-physical" signal (eg. Branching Ratio above unity): Feldman-Cousins ### Feldman-Cousins where R_{input}^{best} is the most probable value of $\mathbf{R}_{\mathrm{input}}$ for a given \mathbf{R} (automatic switching between central and one-sided confidence regions) 0.6 0.4 0.2 ### Which estimator? $$1 - \alpha = P(R_2(R_{data}, \alpha) < R_{true} < R_1(R_{data}, \alpha))$$ this could be any estimator (something which depends on the observed data) ### Counting experiments expected observable distribution $g(x'|\vec{\alpha},\vec{\theta}) = \int R(x,x'|\vec{\alpha}) f_X(x|\vec{\theta}) dx$ observable stochastic (number of events selected) effect of experiment Poisson distribution many pseudo-experiments $$\hat{\sigma}_{signal} = \frac{(N_{DATA} - N_{bck})}{\epsilon_{trigger} \cdot \epsilon_{signal} \cdot \mathcal{L}_{int}}$$ statistical uncertainty on estimator related to the spread of the distribution of x' (systematics due to detector nuisance α , the model of R and theory nuisance θ) ### Fitting distributions $$g(x'|\vec{\alpha}, \vec{\theta}) = \int R(x, x'|\vec{\alpha}) f_X(x|\vec{\theta}) dx$$ If the information on the physics parameter θ of interest is hidden in a distribution g(x') rather than in an event rate, then we need to compare the expected distribution with the observed one. #### binned data (least-square method) $$\vec{n} = \{n_i\}$$ $i = 1 \dots \# bins$ #### event-per-event (maximum likelihood method) $$\vec{x}' = \{x_i'\}$$ i = 1 ... #events ### Least-square method #### Maximum Likelihood method $$g(x'|\vec{\alpha}, \vec{\theta}) = \int R(x, x'|\vec{\alpha}) f_X(x|\vec{\theta}) dx$$ Calculate for each event a likelihood $g(x'|\vec{\alpha}, \vec{\theta}, m_t) \longrightarrow \mathcal{L}(m_t|x', \vec{\alpha}, \vec{\theta})$ Put them together $$\mathcal{L}(m_t|\vec{x},\vec{\alpha},\vec{\theta}) = \prod_{i=1}^N \mathcal{L}(m_t|x_i',\vec{\alpha},\vec{\theta})$$ Take the maximum of the likelihood or from the log-likelihood: $$ln\mathcal{L}(m_t|\vec{x},\vec{\alpha},\vec{\theta}) = \sum_{i=1}^{N} ln\mathcal{L}(m_t|x_i',\vec{\alpha},\vec{\theta})$$ $$\longrightarrow \left(\frac{\partial ln\mathcal{L}(m_t|\vec{x},\vec{\alpha},\vec{\theta})}{\partial m_t}\right)_{m_t = \hat{m}_{t,ML}} = 0$$ $$\longrightarrow \hat{m}_{t,ML} = \dots$$ ### Systematic uncertainties $$g(x'|\vec{\alpha}, \vec{\theta}) = \int R(x, x'|\vec{\alpha}) f_X(x|\vec{\theta}) dx$$ There are uncertainties in the physics description f_X as well as in the experimental modelling R. Be clever, for the dominant systematic uncertainties try to fit the nuisance parameter α together with the physics parameter θ of interest. This results in a reduced total uncertainty on the physics parameter of interest. Example: top mass measurement and the jet energy scale ## Confronting data with theory Is my fancy model of new physics predicting a new particle present in the collision data or not? Monte Carlo $$g(x'|\vec{\alpha},\vec{\theta}) = \int R(x,x'|\vec{\alpha}) f_X(x|\vec{\theta}) dx$$ $$= xperiment$$ $$g(m'_{4l}|\vec{\alpha},\vec{\theta},m_H) = \int R(m_{4l},m'_{4l}|\vec{\alpha}) f_X(x|\vec{\theta},m_H) dm_{4l}$$ For each value of m_H we need to compare the model with data $$g(m'_{4l}|\vec{\alpha}, \vec{\theta}, m_H) \longleftrightarrow \text{data} = \{m'_{4l,i}\}$$ ### p-values Quantify the level of agreement between the model (=hypothesis H_0) and the data without an explicit alternative hypothesis. Collect the data $\{x_i\}$ into one test statistics T (another stochastic variable), which has a distribution $g(t|H_0)$. If T is defined such that large values of t reflect a worse agreement with data, then the p-value is defined as: $p = \int_{t_0}^{\infty} g(t|H_0) \ dt$ The p-value takes values between 0 and 1, and reflects the probability that a new experiment (in the same conditions) would results in a worse agreement with the hypothesis H_0 , given the hypothesis H_0 is correct. correct. Eg.: $$t = \chi^2 = \sum_{i=1}^{n_{bins}} \left(\frac{n_i - h_i(m_H, \vec{\alpha}, \vec{\theta})}{\sqrt{h_i(m_H, \vec{\alpha}, \vec{\theta})}} \right)$$ ### p-values (eg. $H\rightarrow 4I$) ## The CL_s method We have the freedom to choose a test statistics to calculate the p-values from the data \vec{n}_{i} , an example is based on the likelihood ratio $$Q(\vec{n}) = \frac{\mathcal{L}(\vec{n}|s+b)}{\mathcal{L}(\vec{n}|b)} \longrightarrow t = -2lnQ(\vec{n})$$ The distribution of t can be obtained using "b-only" simulation or using "s+b" simulation. This is the optimal test statistics if one uses the value of CL_S to characterize the signal confidence. $$CL_s = \frac{CL_{s+b}}{1-CL_b}$$ For each m_H a value of CL_s using the data \vec{n} is obtained. ## Setting limits (Higgs search) $$CL_s = \frac{CL_{s+b}}{1-CL_b} = \frac{"p-value\ s+b"}{1-"p-value\ b"}$$ The distribution of CL_s is obtained from simulation, and the green (yellow) band reflects for each value of m_H the expected 1σ (2σ) interval if the data would be background only. ### Claiming discovery (Higgs boson) $5\sigma = 1$ in 3,5 million ... for most other analyses however the result is a limit ... ## Summary of part 2 ### Summary of part 2 #### Experiment meets theory! - 1 Detectors make our life complicated... deal with it! - 2 The event selection (incl trigger) is essential in physics analyses - 3 Different methods to estimate parameters... learn the differences! $$g(x'|\vec{\alpha}, \vec{\theta}, m_H) \longleftrightarrow \text{data} = \{x_i'\}$$ - When confronting data with theory limits are set or discoveries claimed - 5 Experimentalists have a hard (but fruitful) life... ### Big summary... #### How to test your theory? $$g(x'|\vec{\alpha}, \vec{\theta}) = \int R(x, x'|\vec{\alpha}) f_X(x|\vec{\theta}) dx$$ - 1 Test it yourself on existing results (part 1 of these lectures) - ② Make it available to experimentalists to be included in their analyses (part 2 of these lectures)