

CMS Experiment at the LHC, CERN Data recorded: 2015-Jul-12 06:52:51.677888 GMT Run / Event / LS: 251562 / 310157776 / 347

Status of the CMS experiment

Jorgen D'Hondt (Vrije Universiteit Brussel) on behalf of the CMS Collaboration

di-jet event with m(jj) of 5.4 Tev

The CMS experiment @ LHC

"Status of the CMS experiment"

The CMS Collaboration

DERUXELLES BRUSSEL

Applications from in total 10 new institutions in 2015 from Russia, Ecuador, Hungary, China, Belgium, Korea

"Status of the CMS experiment" Jorgen D'H

Timeline

CMS-PHO-PUBLIC-2013-005-1

Run-1 results at 7 and 8 TeV

Xavier Cortada (with the participation of physicist Pete Markowitz), "In search of the Higgs boson: H -> WW", digital art, 2013.

The LHC is a QCD machine

 $\alpha_S(M_Z) = 0.1171 \pm 0.0013 \text{ (exp)} \pm 0.0024 \text{ (PDF)} \pm 0.0008 \text{ (NP)} ^{+0.0069}_{-0.0040} \text{ (scale)}$

renormalisation & factorisation

Eur. Phys. J. C 75 (2015) 186

BRUSS

"Status of the CMS experiment"

... a B-physics machine

... a Heavy Ion machine

Understanding the properties of the quark-gluon plasma.

CMS observes melting of Upsilon (Y) particles in heavy-ion collisions.

"Status of the CMS experiment"

... a W/Z/top machine

CMS Preliminary

ES

BRUSSE

... and a Higgs particle machine

"Status of the CMS experiment"

BRUSSE

FS

... and a Higgs particle machine

ATLAS/CMS combination: SM like couplings within the current precision The combined signal yield relative to the SM expectation is:

 $\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07} \text{ (stat) } ^{+0.04}_{-0.04} \text{ (expt) } ^{+0.03}_{-0.03} \text{ (thbgd)} ^{+0.07}_{-0.06} \text{ (thsig)}$

"Status of the CMS experiment"

BRUSS

FS

... more CMS Publications

"Status of the CMS experiment"

Searches for new physics

"Status of the CMS experiment"

Nelson Hsu drawings for Quanta Magazine (August 2014), "At Multiverse Impasse, a New Theory of Scale" by Natalie Wolchover

"Status of the CMS experiment"

Nelson Hsu drawings for Quanta Magazine (August 2014), "At Multiverse Impasse, a New Theory of Scale" by Natalie Wolchover

"Status of the CMS experiment"

Nelson Hsu drawings for Quanta Magazine (August 2014), "At Multiverse Impasse, a New Theory of Scale" by Natalie Wolchover

"Status of the CMS experiment"

Nelson Hsu drawings for Quanta Magazine (August 2014), "At Multiverse Impasse, a New Theory of Scale" by Natalie Wolchover

Nelson Hsu drawings for Quanta Magazine (August 2014), "At Multiverse Impasse, a New Theory of Scale" by Natalie Wolchover

"Status of the CMS experiment"

Will the LHC become a SUSY machine?

The signal can hide in a >100 dimensional parameter space here only one (simplified model) example

"Status of the CMS experiment"

Key challenge for Run-2

we need to turn each stone in the search for supersymmetry

"Status of the CMS experiment"

CMS-PHO-PUBLIC-2013-006-1

Towards Run-2: Long-shutdown 1

Xavier Cortada (with the participation of physicist Pete Markowitz), "In search of the Higgs boson: H -> gamma gamma", digital art, 2013.

LS1 program

Installation of new detector systems and extension of existing ones. Repair and maintenance after 3 years of Run-1 operation, and consolidation for the long-term future. CMS closed for physics on March 29th.

Preparations for the new "Stage-1" trigger system

Extra CSC chambers

Extra RPC chambers

New DAQ system

HF μ TCA back-end electronics

Tracker cold (-10/15°C) New dry-gas injection system

New distributed analysis tools (CRAB3)Upgraded beam monitorsData federation deployed (AAA)New Pixel Luminosity Telescope

New reconstruction software & miniAOD format & pile-up mitigation

Computing & Offline evolution

Increased pile-up imposes important challenges to our computing and software parts

CMS achieved major improvements in the efficiency reconstruction code

→ also deployment of multithreaded algorithms

These challenges are also essential towards the HL-LHC settings

CMS-PHO-PUBLIC-2013-007-1

Run-2 at 13 TeV

General reference: http://cms-results.web.cern.ch/cms-results/public-results/publications/

Xavier Cortada (with the participation of physicist Pete Markowitz), "In search of the Higgs boson: H -> bottom bottom", digital art, 2013.

Data collected by CMS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults

CMS Integrated Luminosity, pp, 2015, $\sqrt{s} =$ 13 TeV

TOTAL in 2015: 4.1 fb⁻¹ / 3.7 fb⁻¹ (delivered/recorded)

- B = 3.8T: $3.1 \text{ fb}^{-1} / 2.9 \text{ fb}^{-1}$ (93%)
- $B \neq 3.8T$: 1.0 fb⁻¹ / 0.8 fb⁻¹ (80%)

Cryogenic system for CMS magnet

- The restart of the CMS magnet after LS1 was more complicated than anticipated due to problems with the cryogenic system in providing liquid Helium.
- These problems are consistent with clogging effects due to contaminants in the "Cold box" that provides liquid Helium.
- Currently the magnet can be operated, but the continuous up-time is still limited by the performance of the cryogenic system requiring more frequent maintenance than usual.
- A comprehensive program to re-establish its nominal performance is being organized for the end-of-the-year technical stop.

Performance of the experiment

Active Detector Fraction Run 1 to Run 2

"Status of the CMS experiment"

Di-muon mass spectrum

Collected with various di-muon triggers, from inclusive di-muons triggers at high p_T and low-mass non-resonant di-muon triggers, to specialized triggers.

BRUSSE

ES

Di-muon mass spectrum

Collected with various di-muon triggers, from inclusive di-muons triggers at high p_T and low-mass non-resonant di-muon triggers, to specialized triggers.

BRUSSE

ES

Di-muon mass spectrum

ES

Muon reconstruction

Using Tag-and-Probe methods on Z events

→ using certified data & MadGraph_aMC@NLO Drell-Yan+jets samples

CMS DP-2015/047

"Status of the CMS experiment"

Electron reconstruction

Using Tag-and-Probe methods on Z events

BRUSSE

LES

32

B-tagging performance

Data driven estimation of the tagging performance

→ using certified data & multi-jet events

Individual and combined measurements of the ratio of b-tagging efficiencies of data to that in simulation.

The grey hatched areas represent the combined measurement which is parameterized as a function of jet p_T.

CMS DP-2015/045

"Status of the CMS experiment"

CMS-PHO-PUBLIC-2013-008-1

Spectacular events at 13 TeV

Xavier Cortada (with the participation of physicist Pete Markowitz), "In search of the Higgs boson: H -> tau tau", digital art, 2013.

A very nice 4-lepton event

CERN-CMS-DP-2015-016

"Status of the CMS experiment"

Jorgen D'Hondt (Vrije Universiteit Brussel)

35

A very nice 4-lepton event: Higgs?

CERN-CMS-DP-2015-016

"Status of the CMS experiment"

Jorgen D'Hondt (Vrije Universiteit Brussel)

36

CMS Experiment at the LHC, CERN Data recorded: 2015-Aug-22 02:13:48.861952 GMT Run / Event / LS: 254833 / 1268846022 / 846

e⁺e⁻ final state M(e⁺e⁻) = 2.9 TeV

More physics in talk of G. Dissertori

"Status of the CMS experiment"

BRUXELLES BRUSSEI

CMS

Upgrades: Towards improved detectors

Xavier Cortada (with the participation of physicist Pete Markowitz), "In search of the Higgs boson: H -> ZZ", digital art, 2013.

Timeline

Overview of Phase-1 upgrades

Since the initial construction of CMS the pile-up will increase to twice the design and new technology opportunities appeared.

Upgrades are ongoing for three areas:

• New Pixel Tracker: a barrel part with 4 layers and 3 forward disks, as well as a new readout chip

 \rightarrow installation E-YETS 2016-2017

 Level-1 Trigger: to cope with the higher rate the calorimeter and muon L1 trigger system is being upgraded as well as the global trigger

ightarrow installation and commissioning in 2014-2016

- Hadron Calorimeter: new electronics to be installed for the HF to allow timing based background rejection and new SiPM's for the barrel and endcap (HB/HE) readout
 - \rightarrow installation HF electronics YETS 2015-2016
 - \rightarrow HCAL installation during LS2

The US has a major role in all these upgrades

CMS

Pixel Phase-1 upgrade

- More layers will be added in the barrel and endcap regions (most inner barrel layer with a radius of 3cm): will reduce fake rate and improve track resolution and efficiency
- New readout chip to operate at 50 pile-up and 100kHz, and tolerate rates up to 100 pile-up events
- 8 pilot modules are installed on forward blades for Run-2

"Status of the CMS experiment"

L1 trigger Phase-1 upgrade

- Need to maintain the trigger performance of Run-1 towards Run-2&3
- Move to high-performance FPGA's and common use of the μTCA architecture
- Deployed from "legacy" to "upgrade" trigger system in two stages

HCAL Phase-1 upgrade

- New photodetectors to deal with radiation and anomalous signals: for HB/HE from HPD \rightarrow SiPM, for HF from single-anode PMT \rightarrow dual-anode PMT's
- New Front-End and Back-End electronics

New µTCA Back-end

"Status of the CMS experiment"

Jorgen D'Hondt (Vrije Universiteit Brussel)

QIE10 (HF)

HCAL Phase-1 upgrade

- New photodetectors to deal with radiation and anomalous signals: for HB/HE from HPD → SiPM, for HF from single-anode PMT → dual-anode PMT's
- New Front-End and Back-End electronics

delivered (installation YETS 2015-2016)

"Status of the CMS experiment"

HCAL Phase-1 upgrade

- New photodetectors to deal with radiation and anomalous signals: for HB/HE from HPD → SiPM, for HF from single-anode PMT → dual-anode PMT's
- New Front-End and Back-End electronics

"Status of the CMS experiment"

CMS-PHO-PUBLIC-2013-009-1

Upgrades: Towards HL-LHC

Xavier Cortada (with the participation of physicist Pete Markowitz), "In search of the Higgs boson: H -> ZZ", digital art, 2013.

More luminosity at HL-LHC

From full LHC dataset to full HL-LHC dataset a factor of >2 improvement in Higgs boson SM coupling precision (scaled from current measurements and assuming same detector performances with the full 300-3000/fb).

CMS Projection

<u>Two scenarios</u>: (1) where systematic uncertainties do not scale with more integrated luminosity, and (2) where they do scale down with a factor of 2

More luminosity at HL-LHC

All plots from CMS Phase-2 Technical Proposal CERN-LHCC-2015-010

"Status of the CMS experiment"

More luminosity at HL-LHC

LES BRUSSE

"Status of the CMS experiment"

HL-LHC: more luminosity

"Baseline" peak luminosity 5 x 10³⁴ cm⁻² s⁻¹ (now ~1 x 10³⁴ cm⁻² s⁻¹) → 140 PU
 "Ultimate" peak luminosity 7.5 x 10³⁴ cm⁻² s⁻¹ (i.e. 200 PU) potentially increasing integrated luminosity by 30%

Top quark pair event with 140 PU events

CMS Phase-II (i.e. HL-LHC) upgrade goals

- Maintain Phase-I detector performance, at 140 PU (baseline)
- Enable operation at 200 PU (ultimate), with moderate performance degradation
- Radiation tolerance 3000 fb⁻¹ margin up to 4000 fb⁻¹

More luminosity, i.e. more radiation

Dose, 3000 fb⁻¹

"Status of the CMS experiment"

Jorgen D'Hondt (Vrije Universiteit Brussel)

53

More luminosity, i.e. more radiation

Dose, 3000 fb⁻¹

"Status of the CMS experiment"

More luminosity, i.e. more radiation

Dose, 3000 fb⁻¹

"Status of the CMS experiment"

Jorgen D'Hondt (Vrije Universiteit Brussel)

55

Upgrades for the CMS experiment

New Endcap Calorimeter

- Radiation Tolerant
- High Granularity _
- 3D capability

New Tracker

- Radiation tolerant less material
- 40 MHz selective readout (PT>2 GeV) for track trigger
- Extend to coverage of η~3.8

These upgrades come with scientific/technical challenges and the CMS Collaboration is prepared to face them

Barrel Calorimeter

- Replace FE/BE electronics
- Lower operating temperature(8°)

Muon system

- Replace DT/CSC FE/BE electronics
- Complete RPC coverage In region 1.5<η<2.4
- Muon tagging with GEMs for 2.4<η<3.0

Technical Proposal: CERN-LHCC-2015-010, https://cds.cern.ch/record/2020886

L1 Trigger: 12.5 µs latency,

Trigger/HLT/DAQ
L1 Track Trigger

750 kHz outputHLT output of 7.5 kHz

"Status of the CMS experiment"

Tracker Upgrade: Outer Tracker

"Status of the CMS experiment"

BRUXELLES BRUSSE

Tracker Upgrade: Inner (Pixel) Tracker

BRUXELLES BRUSSE

58

Barrel Calorimeter Upgrade

Adapt to the trigger requirements & reduce radiation induced noise

- New electronics to meet the trigger latency of 12.5 µs and L1 rate of 750 kHz
- Adjust operating temperature (8°C) to limit the noise in the APD's to 200 MeV

"Status of the CMS experiment"

Forward Calorimeter Upgrade

3D shower measurement in a new High-Granularity Calorimeter (HGC) with high timing precision, will mitigate pile-up effects

 $1.5 < |\eta| < 3.0$

ECAL section (EE): Tungsten/Silicon Depth of $25X_0$, 1.5λ (28 layers)

HCAL section (FH): Brass/Silicon Depth of 3.5λ (12 layers)

Backing HCAL section (BH): Brass/Scintillator Depth of 5λ (12 layers)

Total depth of $\textbf{10}\lambda$

"Status of the CMS experiment"

Forward Calorimeter Upgrade

New Back Hadron calorimeter with scintillating tiles

- Similar to current HE but more radiation tolerant and higher granularity \rightarrow x2 in φ and x1.3 in η
- Finger tile design with a shorter light path

"Status of the CMS experiment"

Upgrades for the CMS experiment

- R&D is well defined and in progress
- Technical Design Reports (TDRs) to be delivered in 2017

Based on our successes and experiences, the CMS Collaboration is gearing up for its Phase-2 construction as well as its research program towards HL-LHC.

Upgrades for the CMS experiment

- R&D is well defined and in progress
- Technical Design Reports (TDRs) to be delivered in 2017

Based on our successes and experiences, the CMS Collaboration is gearing up for its Phase-2 construction as well as its research program towards HL-LHC.

LS2: installation of GEM detectors

- Triple-GEM in 1.5<| η |<2.2 region
- Improve L1 and HLT muon p_T resolution to reduce/maintain the global muon trigger rate
- Ensure 100% trigger efficiency in Run-3

"Status of the CMS experiment"

Status of the CMS experiment

Excellent detector performance during Run-1
 >400 journal papers, including a major discovery

3 Successful program during LS1 (2013-2014)
4 Well prepared for 13 TeV collisions

5 First 13 TeV results appear

6 En-route for another long list of new physics insights

Preparing for our future research at the HL-LHC

Many challenges ahead!

>4000 CMS members with excellent skills to face them

"Status of the CMS experiment"

Back-up

"Status of the CMS experiment"

The CMS Management

"Status of the CMS experiment"

The Particle Physics Puzzle

"Status of the CMS experiment"

