

TopQuark Meeting

Michael Maes

Introduction

Current Status

Datasamples First comparisor PFJet-CaloJet Profile η vs Δ E Quark-Jet Plots JetObservables

TopQuark Meeting Comparing ParticleFlow and Calorimeter Jets

Michael Maes

24 November 2008

TopQuark Meeting

Michael Maes

Introduction

- Current Status
- Datasamples First comparison PFJet-CaloJet Profile η vs ΔE Quark-Jet Plots JetObservables

1 Introduction

2 Current Status

- Datasamples
- First comparison PFJet-CaloJet
- \Box Profile η vs ΔE
- Quark-Jet Plots
- JetObservables

Aim of the project

TopQuark Meeting

Michael Maes

Introduction

Current

- Datasamples First comparison PFJet-CaloJet Profile η vs ΔE Quark-Jet Plots JetObservables
- Compare Calorimetry Jets (CaloJets) and Particle Flow Jets (PFJets)
- First stage: compare them by simple variables like angles, energies, constituents,
- Second stage: use both JetReconstruction methods to construct physics objects (e.g. TopMass) and compare their performance in this context.

ParticleFlow Reconstruction (1)

TopQuark Meeting

Michael Maes

Introduction

Current

Datasamples First comparison PFJet-CaloJet Profile η vs ΔE Quark-Jet Plots JetObservables

- For Particle Flow reconstruction, all subdetectors of CMS are used!
- Each particle in an event is identified and reconstructed (e.g e⁻, γ, μ, hadrons,...)
- For each reconstructed particle, the energy and direction is determined along with calibration and correction factors.
- Finally the Jets are constructed from these reconstructed particles.

ParticleFlow Reconstruction (2)

TopQuark Meeting

Michael Maes

Introduction

- Current
- Datasamples First comparison PFJet-CaloJet Profile η vs Δ E Quark-Jet Plots JetObservables
- A global calibration must still be applied on the PFJets because the whole energy can't be collected due to tresholds, magnetic field, efficiencies, ...
- The global calibration factor is expected to be smaller for PFJets than for CaloJets!
- PFJets are expected to have a better energy and angular resolution than CaloJets.

Datasamples (1)

TopQuark Meeting

Michael Maes

Introduction

Current Status

Datasamples

First comparisor PFJet-CaloJet Profile η vs Δ E Quark-Jet Plots JetObservables

- Find a good "recipe" for PAT under CMSSW_2_1_9.
- Production of patLayer1 objects from the TauolaTTBar_Summer08_IDEAL_V9_V1_GEN-SIM-RECO dataset via CRAB.
- Production via Physic
 - sTools/PatAlgos/test/patLayer1_fromAOD_PFJets_full.cfg.py
- $\,\,$ Total of \approx 150k events

Datasamples (2)

TopQuark Meeting

Michael Maes

ntroduction

Current Status

Datasamples

First comparison PFJet-CaloJet Profile η vs Δ E Quark-Jet Plots JetObservables

- Problem: New RecoParticleFlow code since September.
 All samples before that time contain untrustable PFJets.
- Solution: Did the Reconstruction of the raw-data myself using the latest and greatest tags for the ParticleFlow packages in CMSSW_2_1_11 with a config file based on Configuration/Examples/python/RecoExample_cfg.py.
- New patLayer1 objects produced from this reco-sample.

Old vs New PFjests: P_t and η

TopQuark Meeting

Michael Maes

Introduction

Current Status

Datasamples

PFJet-CaloJet Profile η vs ΔI Quark-Jet Plots JetObservables

Figure: Pt of the PFJets

Figure: Eta of the PFJets

- For the new PFJets the distribution peaks for $\eta < -2.4$ and $\eta > 2.4$. In this region there is no tracker info, so what is a PFJet at that point?
- For now I placed a cut on η to use only the barrel-part of CMS.

Some basic variables (1)

TopQuark Meeting

Michael Maes

Introduction

Current Status

Datasample

First comparison PFJet-CaloJet Profile η vs \triangle E Quark-Jet Plots JetObservables For the following plots, I started from quarks comming from the recoGenParticles collection and matched these to a CaloJet and a PFJet.

Matching criteria for quark-Jet:

- \Box ΔR Jet quark < 0.3
- The PDGID of jet→genParticle must be equal to that of the quark.
- The momentum components of jet→genParticle must match these of the quark.
- Without matching it would have no sense comparing the PFJets and CaloJets.

Some basic variables (2)

TopQuark Meeting

Michael Maes

Introduction

Current Status

Datasamples First comparison

PFJet-CaloJet Profile η vs ΔE Quark-Jet Plots JetObservables

Figure: η of the jets: red: PFJets blue: CaloJets Figure: ϕ of the jets: red: PFJets blue: CaloJets

Jets phi

0.02 0.018

0.016

0.012

0.01

0.008

0.002

Some basic variables (3)

Michael Maes TopQuark Meeting

Some basic variables (4)

TopQuark Meeting

Michael Maes

Introduction

Current Status

Datasampl

First comparison PFJet-CaloJet Profile η vs \triangle E Quark-Jet Plots JetObservables

Figure: Angle between PFJets and CaloJets

- Angle between the two types of jets (with the matching mentioned above).
- This angle is small as expected from the strict matching of the jets.

Profile η vs ΔE

TopQuark Meeting

Michael Maes

Introduction

Current Status Datasampl

PFJet-CaloJet Profile η vs ΔE Quark-Jet Plots

Figure: Profile η vs ΔE

- For this plot no η -cut was applied. Matching was done in the same way as the previous plots.
- □ In the region -2.4< η <2.4 the energydifference is small compared to the regions outside.

Angles quark-Jet

TopQuark Meeting

Michael Maes

ntroduction

Current Status Datasamples First comparisor PFJet-CaloJet Profile η vs ΔE Quark-Jet Plots JetObservables

Figure: η quark-jet: blue: PFJets red: CaloJets

Figure: ϕ quark-jet: blue: PFJets red: CaloJets

- These are last-minute plots so results must be checked.
 Matching Jet-Quark is done as mentioned earlyer.
- The angular resolution of the PFJets should be better but at first sight this is not the case here. (To be checked)

Energy quark-Jet

TopQuark Meeting

Michael Maes

Introduction

Current Status Datasamples First comparisor PFJet-CaloLet Profile η vs ΔE Quark-Jet Plots

Figure: Energy quark-jet: blue: PFJets red: CaloJets

Matching Jet-Quark is done as mentioned earlyer.
The Energy resolution of the PFJets should be better but at first sight this is not the case here. (To be checked)

Jet Observable 2

TopQuark Meeting

Michael Maes

Introduction

Current Status

Datasamples First comparison PFJet-CaloJet Profile η vs Δ E Quark-Jet Plots JetObservables Jet observables from "Performance of the JetRejector tool
 Jet Algo Meeting 12 Feb 2008"

Observable 2: <u>EMCalEnergyFraction+HadCalEnergyFraction</u> EMCalEnergyFraction-HadCalEnergyFraction

Figure: Observable 2: blue: PFJets red: CaloJets

There is a nice separation between the peaks.

Other JetObservables

TopQuark Meeting

Michael Maes

Introduction

Current Status

Datasamples First comparisor PFJet-CaloJet Profile η vs ΔE Quark-Jet Plots JetObservables Among others the following observables will be tested:

- Obs13: α =Sum(Pt TrackPV)/Pt Jets
- Obs14: $\beta^2 = \text{Sum}(\text{Pt TrackPV}) / Sum(PtTrack)^2$
- Determination of PV is ok, but still some problems with Jet-Track Association.