

Estimating jet energy calibration factors

- Introduction
 - Jet energy corrections at CMS: factorized multi-level approach
- Method
 - Estimation of jet energy calibration factors with top quark events
- Results obtained with CMSSW_1_6_9 (TOP-PAS-07-004)
 - Short summary of previous results
- Present status in CMSSW_2_1_9
 - Estimation of the jet energy calibration (JEC) factors in (p_{τ} , η)-bins
 - Combined estimation of the JEC factors and the top quark mass
- Outlook towards CMSSW_2_2_X

Petra Van Mulders

IIHE-Top Quark Meeting November 24th 2008

- Goal of the jet energy correction is to relate the jet energy measured in the detector to the energy of the final state particle jet or parton jet.
- Plans for jet energy corrections at CMS: factorized approach (PAS JME-07-002)

- **1. Offset:** correction for pile-up and electronic noise
- 2. Relative (η): correction for variations in jet response with η relative to a control region
- **3.** Absolute (p_{τ}) : correction to particle level versus jet p_{τ} in the control region
- 4. EMF: correction for variations in jet response with electromagnetic energy fraction
- **5.** Flavor: correction to particle level for different types of jets (light quark, c, b, gluon)
- 6. UE: correct ion for underlying event energy due to soft interactions involving spectator partons
- 7. Parton: correction to parton level
- Top quark events:
 - Possible to provide a combined jet energy correction for: 2+3+5+7
 - One can also apply jet energy corrections obtained with other events and use top quark events for the validation of the applied corrections

e,μ

- Semi-leptonic channel:
 - Leptonic side used to select the event
 - Hadronic side is used to estimate the jet energy calibration factors
- On the hadronic branch 2 mass constraints:
 - m_w = 80.399 ± 0.025 GeV/c² (precision: 0.03%)
 - m_{top} = 172.4 ± 1.2 GeV/c² (precision: 0.7%)
- apply the mass constraints on the event by means of a kinematic fit and estimate the jet energy scale

Example of selection cuts in 1_6_9 (14 TeV):

- p_⊤(jets)>40GeV,|η| <2.5
- p_⊤(μ)>30 GeV,|η|<2.1
- μ isolated: (tracker+calorimeter isolation)
- non-overlapping jets: ∆R(jet i,jet j) > 1.0
- μ separated from jets: ΔR(jets,μ) > 0.5 ← more info in backup (separate study)

Nov 24, 2008 – Top Quark Meeting IIHE Estimating jet energy calibration factors

b

hadronic side \rightarrow JEC estimate

Kinematic fit in CMSSW

- Package: PhysicsTools/KinFitter (originally from Aleph and BaBar)
- Our knowledge of the observed event comes from measured objects in the final state (i = jets, lepton, 'neutrino').
 - * this can be summarized as $\mathbf{p}_i = \{ E_i, \theta_i, \varphi_i \}$ (for example)
 - $\boldsymbol{\ast}$ together with the covariance matrix \boldsymbol{V}_i for each object i

Extend this knowledge p_i and V_i by assuming some hypothesis for the event

* for example : $m_{jj} = m_w \& m_{jjb} = m_t$

Add Lagrange multipliers λ_k in the χ^2 equation to incorporate these hypothesed constraints in our knowledge of the event ($\Delta p = p^{fit} - p^{measured}$)

 $\chi^2(\mathbf{p}^{\text{fit}}) = \Delta \mathbf{p}^{T} \mathbf{V}^{-1} \Delta \mathbf{p} + 2 \sum \lambda_k f_k(\mathbf{p}^{\text{fit}}, \mathbf{a})$

 \star where we have the *m* constraint functions f_k and unmeasured parameters **a**

* for the true measured and unmeasured parameters $\rightarrow f_k(\mathbf{p}_{true}, \mathbf{a}_{true}) = 0$

If the constraints are non-linear an iterative procedure is used to solve them
 the equation f_k(p,a)=0 are linearized in each iteration step (*Taylor expansion*)

* the χ^2 equation is minimized ($\partial \chi^2 / \partial \mathbf{p} = 0$, $\partial \chi^2 / \partial \mathbf{a} = 0$, $\partial \chi^2 / \partial \lambda_k = 0$) and solved

the iteration stops when some pre-defined convergence criteria are fulfilled

• A P(χ^2) is returned by the kinematic fit, reflecting the probability that the constraints are fulfilled

Nov 24, 2008 – Top Quark Meeting IIHE Estimating jet energy calibration factors

- According to the chosen jet-parton association, the 3 jets coming from the hadronic top decay are used in an event-by-event kinematic fit
- Jet resolutions(uncertainty on jet parameters) are parametrized versus p_{τ} and η
- The constraints $m_w^{rec} = m_w^{world}$ and $m_t^{rec} = m_t^{world}$ are true at parton level
- Before the kinematic fit is applied, the reconstructed jet energies are altered by a factor ΔE_{b} (for the b-jet), ΔE_{j1} and ΔE_{j2} (for the 1st and the 2nd light jet)
 - E/|p| is kept constant when altering the jet energies
 - The P(χ^2) returned by the kinematic fit is translated in a $\chi^2(\Delta E_{b}, \Delta E_{j1}, \Delta E_{j2})$
- This step is repeated for correction factors between e.g. ± 50%, in this way a whole range of jet energy correction factors is scanned
- The best estimate of the jet energy correction factors is found by minimizing the 3D-function $\chi^2(\Delta E_{b}, \Delta E_{j1}, \Delta E_{j2})$
- To reduce the process background a tight event selection is applied
- A likelihood ratio or MVA discriminator is used to identify the correct jet combination
- A cut on the discriminator is made to reduce the combinatorial background
- To reduce contributions from mis-reconstructed events cuts are made on the probability returned by the kinematic fit

Remark: in CMSSW_1_6_9 both light jet energy correction factors were required to be equal

• To identify the correct jet combination four observables are combined into a LR:

JEC factors with CMSSW_1_6_9 iine

- For each event we have an estimate of the JES corrections, $\Delta E_{\text{b,i}}$ and $\Delta E_{\text{l,i}}$ (i=event)
- Events for which $\Delta E_{b,i}$ or $\Delta E_{l,i} > \pm 20\%$ w.r.t first estimate are removed:
- → The relative difference between the fitted expectation value of the m_w distribution and M_w^{world} is taken as a first estimate for light jets: $\Delta E_{t,incl.}$
- → Difference between MC expectation values of light and b JES corrections (7%) is used to obtain the first estimate for b jets $\Delta E_{b,incl.}$ from $\Delta E_{l,incl.}$
- The $P^{fit}(\chi^2 | \Delta E_b, \Delta E_l)$ -values of the remaining events are translated into χ^2 -values
 - The χ²-values are combined and<sup>^{*}
 the minimum is searched for
 </sup>
 - Results are corrected for the width of pull distributions
 - The uncertainty reflects the uncertainty for 100 pb⁻¹

-40

-20

- Method is linear (slope of 0.77± 0.02 for light jets and 0.87⁴⁰⁰ ± 0.03 for b jets → to avoid bias: corrections to be stimated should not deviate too much from 0)
 Method is reduct against process and some background ³⁰⁰
- Method is robust against process and comb. background
- Method is also robust against smeared jet resolutions

- Performance of method depends on $\Delta m_{\rm t}$ from Tevatron

Nov 24, 2008 – Top Quark Meeting IIHE Estimating jet energy calibration factors

b JES correction (%)

40

20

CMSSW_2_1_9: Resolutions

- In TQAF Layer 2, the event solutions (according to the possible jet-parton associations) are build using the EDProducer TtSemiEvtSolutionMaker
 - Every solution is a member of the class TtSemiEvtSolution
- On the existing structure of the Layer 2, I build a Layer 3 for my analysis (~60 hours for 5000 events with 25 JEC factors and 5 m,):
 - A producer provides for every solution a vector containing all the χ²-values for the different JEC factors and top masses
 - The provided "new" solutions are based on a class which inherits from TtSemiEvtSolution: all methods of TtSemiEvtSolution can be used + some extra methods to read out the vector containing the χ²-values.
 - On the Layer 3 the EDAnalyzer can be run to estimate the best JEC factors:
 - In the configuration file the $\eta\mathchar`$ and $p_{\tau}\mathchar`$ bins are specified
 - Among the 12 solutions, the best jet-parton association is picked (now the Monte-Carlo best jet-parton association is used: smallest sum of $\Delta R_{(jet, parton)}$)
 - The EDAnalyzer provides the estimated JEC factors for every (p_{τ} , η)-bin and every top mass m_t
 - The EDAnalyzer provides also the plots with the $\Delta \chi^2$ -values
- A separate EDAnalyzer is used to make plots of variables used in the event selection and ROOT macros are used to make the plots more fancy

CMSSW_2_1_9: Illustration (1 (p₁,η)-bin) *i*

Nov 24, 2008 – Top Quark Meeting IIHE Estimating jet energy calibration factors

CMSSW_2_1_9: Illustration (4 (p,,η)-bins)

- With new crab-jobs (wider range, smaller stepsize, 5 different top masses)
 - Apply all selection cuts
 - Get results as function of p_{τ} and η
 - Try to get a combined measurement of top quark mass and the JEC factors
 - CMSSW_2_2_X:
 - Make new jet resolutions in CMSSW_2_2_X (from the produced Pat-tupple)
 - Develop method to give resolutions to kinematic fit (previous method obsolete)
 - Event hypothesis changes in CMSSW_2_2_X:
 - Need to change code (my class inherits from TtSemiEvtSolution class which is obsolete)
 - Use MVA discriminator tools to find the best jet-parton association
 - Two main problems last weeks:
 - "matrix is singular" in kinematic fit: problem to invert a singular matrix.
 - → applied another method to invert the matrix solves the problem
 - check consistency between 2 methods
 - Grid-CRAB problems: Bari server, queue too short, ... (should be solved)

Smallest $\Delta R(jet,\mu)$ after cut on Reliso jj

ttbar = all ttbar matched with genMuon ($\Delta R < 0.1$)

After applying the isolation cuts on the μ_1 , there are still a lot of QCD events passing. Applying a cut on the smallest angle between jets and μ removes these events. Plots:

- Reliso > 0.90
- · p_τ^μ > 30 GeV/c, |η|<2.1
- $E_{\tau}^{\text{jets}} > 40 \text{ GeV}, |\eta| < 2.4 \text{ (all jets!)}$
- Normalized

Question: how can we remove these QCD events without removing ttbar?

- E_{τ} closest jet \rightarrow not interesting
- p_{T} muon \rightarrow not interesting (higher values for ttbar compared to QCD)
- d0 muon → not interesting (slightly broader distribution for QCD)
- number of hits for muon → not interesting
- χ^2 /ndf for muon \rightarrow not interesting
- # constituents of closest jet \rightarrow bigger values for ttbar, bigger values for $\Delta R>0.3$
- emEt: energy deposited in ECAL in a cone of 0.3, with exclusion of towers crossed by the muon + all towers in a cone of 0.07 → not so interesting
- HadEt: energy deposited in HCAL in a cone of 0.3, with exclusion of towers crossed by the muon + all towers in a cone of 0.1 → not so interesting
- emEt+hadEt → difference between ttbar and QCD
- emEt/emEt+hadEt → not so interesting
- emS9: energy deposited in 3x3 ECAL crystal shape around the crossed crystal
- → not so interesting
- hadS9: energy deposited in 3x3 HCAL tower shape around the crossed tower
- → not so interesting
- emS9+hadS9 → not so interesting
- emS9/emS9+hadS9 \rightarrow difference for $\Delta R < or > 0.3$, difference QCD/ttbar
- MIP compatibility: are the muon deposits consistent with the deposits of a minimum ionizing particle? \rightarrow difference for $\Delta R < or > 0.3$, difference QCD/ttbar

constituents closest jet

emEt+hadEt

emS9/emS9+hadS9

MIP compatibility

MIP compatibility: are the muon deposits consistent with deposits from a minimum ionizing particle?

