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Introduction: JEC at CMS 2120
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= Goal of the jet energy correction is to relate the jet energy measured in the
detector to the energy of the final state particle jet or parton jet.

= Plans for jet energy corrections at CMS: factorized approach (pas JME-07-002)
Required Corrections Optional Corrections

) B =~ )

Offset: correction for pile-up and electronic noise

Relative (n): correction for variations in jet response with 1 relative to a control region
Absolute (p,): correction to particle level versus jet p; in the control region

EMF: correction for variations in jet response with electromagnetic energy fraction
Flavor: correction to particle level for different types of jets (light quark, c, b, gluon)

UE: correct ion for underlying event energy due to soft interactions involving spectator
partons

Parton: correction to parton level

o0k wbdhRE

N

= Top quark events:
= Possible to provide a combined jet energy correction for: 2+3+5+7

= One can also apply jet energy corrections obtained with other events and
use top quark events for the validation of the applied corrections
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2 Introduction: JEC from top events 27 /2¢2
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= Semi-leptonic channel:
= Leptonic side used to select the event

= Hadronic side is used to estimate the jet
energy calibration factors

hadronic side = JEC estimate

= On the hadronic branch 2 mass constraints:
= m, =80.399 + 0.025 GeVIc” (precision: 0.03%) —__|

m,, = 172.4 + 1.2 GeVIc? (precision: 0.7%)

> a?plx the mass constraints on the event by means
of a kinematic fit and estimate the jet energy scale

Example of selection cutsin 1_6_9 (14 TeV): L
" p-(jets)>40GeV,|n| <2.5 leptonic side - event se}g:tionltrigger
" p+(1)>30 GeV,|n|<2.1

= u isolated: _
(tracker+calorimeter isolation)

= non-overlapping jets:
AR(jet i,jet j) > 1.0

" 1 separated from jets:

A <«—p Mmore info in backu
AR(jets,u) > 0.5 (separate study) i
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Kinematic fit in CMSSW 77422
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CVM5 Not e 2006/ 023

m Package: PhysicsTools/KinFitter (originally from Aleph and BaBar)

Our knowledge of the observed event comes from measured objects in the
final state (i = jets, lepton, ‘neutrino’).

 this can be summarized as p. = { E, ,06, ,¢.} (for example)
< together with the covariance matrix V. for each object i

Extend this knowledge p. and V, by assuming some hypothesis for the event
<« for example : m; =m,, & my; =m,

Add Lagrange multipliers A, in the x2 equation to incorporate these
hypothesed constraints in our knowledge of the event (Ap = pfit — pmeasured)

X2(p™) = ApT V1 Ap +2 2 A, f(p™.a)

< where we have the m constraint functions f, and unmeasured parameters a
< for the true measured and unmeasured parameters - f(p,,&;.) =0

If the constraints are non-linear an iterative procedure is used to solve them
< the equation f (p,a)=0 are linearized in each iteration step (Taylor expansion)

* the x2 equation is minimized ( dx?/op=0 , 0x?/0a=0 , ax?/oA =0 ) and solved
* the iteration stops when some pre-defined convergence criteria are fulfilled

)

L)

0

>

L)

D)

A P(x?) is returned by the kinematic fit, reflecting the probability that the
constraints are fulfilled
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Method e
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According to the chosen jet-parton association, the 3 jets coming from the
hadronic top decay are used in an event-by-event kinematic fit

Jet resolutions(uncertainty on jet parameters) are parametrized versus p, and n
The constraints m,,"*° = m,"°"* and m,"*° = m,"*"? are true at parton level

Before the kinematic fit is applied, the reconstructed jet energies are altered by
a factor AE, (for the b-jet), AE, and AE, (for the 1* and the 2" light jet)

= El|p| is kept constant when altering the jet energies
= The P(x?) returned by the kinematic fit is translated in a ¥ *(AE,,AE,,AE,,)

This step is repeated for correction factors between e.g. + 50%, in this way a
whole range of jet energy correction factors is scanne

The best estimate of the jet energy correction factors is found by minimizing
the 3D-function y*(AE,,AE ,AE,)

To reduce the process background a tight event selection is applied

A likelihood ratio or MVA discriminator is used to identify the correct jet
combination

A cut on the discriminator is made to reduce the combinatorial background

To reduce contributions from mis-reconstructed events cuts are made on the
probability returned by the kinematic fit
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%  JEC factors with CMSSW 1 6 9 77,

e
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Remark: in CMSSW_1_6_9 both light jet energy correction factors were required to be equal
To identify the correct jet combination four observables are combined into a LR:

had topI<P had tops, S: correct jet comb. @ 1
(pr1+pT )l (pTI1+p-|-I2) B: wrong jet comb. %_
" AR(11,12) RO
« b-value(b1)+b-value(b2) ook

p_mex :max(zilog(Li(Xi))) with Li(X))=S(x,)/B;(X;), i=obs.*

© o
T
Q
2z |
»
g 4
3
<

0-4}+HHHHH+HM
- top quark events,

To purify event sample: P,™ > 0 "¥ ARGetquark)<0.3

~TOP- FAS- 07-004

[_]ttNj signal
[ ttNj other
Il W+jets
B Z+jets

w

For each event P;()?|0,0) (no JES corrections)
For each event and over whole scanned JES
corrections range P,"(y° |AEb,AE) is calculated

Removal of mis- E ooy |
reconstructed events:

P..(x?[0,0) > 0.01 2
Requiring the JES P:«(x"10,0)

corrections are found in
the scanned range:

fitmax(xz IAEb,AE|) > 0.98

10

b 01 02 03 04 05 06 0.7 08 09 1
P(x?3

-2

#events

0 2 4 6

max
PC

TT T T T T T[T T T T[T T T TT T T[T T T T[T T T [T I T TTTT][TTTT
CMS preliminary

102

Pfitmax(x2 IA Eb’A EI)

10 01 0.2 03 04 05 06 07 08 09 1
maximum P(x 2)
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> JEC factors with CMSSW_1 6 9 272/2¢&
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y -
/s

= For each event we have an estimate of the JES corrections, AE,; and AE,; (i=event)
= Events for which AE,; or AE,; > +£20% w.r.t first estimate are removed:
> The relative difference between the fitted expectation value of the m,,
distribution and M,,"°"? is taken as a first estimate for light jets: AE,,,.,
> Difference between MC expectation values of light and b JES corrections (7%)
Is used to obtain the first estimate for b jets AE, ;.. from AE, ...

= The P™(x?|AE,,AE)-values of the remaining events are translated into y%-values

~ 500 T

» The x?-values are combined and” «
the minimum is searched for o

SN .
10 O

o o o
TTT

light JES correction (%)

= Results are corrected for the /"‘““
width of pull distributions 200"

= The uncertainty reflects the 100} ] by
uncertainty for 100 pb* 3

= Method is linear (slope of 0.77+ 0.02 for light jets and 0.87"
+ 0.03 for b jets = to avoid bias: corrections to be " 7.0 £ 0.9%
estimated should not deviate too much from 0)

= Method is robust against process and comb. background **:

= Method is also robust against smeared jet resolutions 1o0]

Lo b b b b B B e |

PR B
a0

= Performance of method depends on Am,from Tevatron ‘ ' b JES correction (%)
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CMSSW 2 1 9: Resolutions
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= o 13 ]
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wrong quark energies! to be checked!!!
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CMSSW 2 1 9: Analysis code 272/42¢&
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In TQAF Layer 2, the event solutions (according to the possible jet-parton
associations) are build using the EDProducer TtSemiEvtSolutionMaker

= Every solution is a member of the class TtSemiEvtSolution

On the existing structure of the Layer 2, | build a Layer 3 for my analysis ( ~60
hours for 5000 events with 25 JEC factors and 5 m,):

= A producer provides for every solution a vector containing all the y*-values
for the different JEC factors and top masses

= The provided “new” solutions are based on a class which inherits from
TtSemiEvtSolution: all methods of TtSemiEvtSolution can be used + some
extra methods to read out the vector containing the y*-values.

On the Layer 3 the EDAnalyzer can be run to estimate the best JEC factors:
= In the configuration file the - and p,-bins are specified

= Among the 12 solutions, the best jet-parton association is picked (how the
Monte-Carlo best jet-parton association is used: smallest sum of AR ,..ton)

= The EDAnalyzer provides the estimated JEC factors for every (p;,n)-bin
and every top mass m,

= The EDAnalyzer provides also the plots with the Ay *>-values

A separate EDAnalyzer is used to make plots of variables used in the event
selection and ROOT macros are used to make the plots more fancy

Nov 24, 2008 — Top Quark Meeting IIHE Estimating jet energy calibration factors 9/12




2 CMSSW_2_1 9: lllustration (1 (p,n)-bin) iie

cuts: E,.,>30 GeVIc; p,,,>30 GeVic; N ..,|<2.5

| bJECest_1bin |

1 bin: 30<p,.,<200 GeV/c and 0<|h(.ets)|<2 5
| bJECexpCALvsREC 1bin |

normalized # event

Fit with Gaussian:
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X 'CMSSW 2 1 9: lllustration (4 (p.m)-bins) 22 22
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cuts: E,.,>30 GeVIc; p,, )>30 GeVic; N s yl<2.5 4 bins: p,.—(30-100),(100-200) and |n..|—(0,1.2),(1.2,2.5)
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1200 s moinaa | 8 oo el
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800 ~ -5.8 +- 1.2% E
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o] . /i :

I R B Expected values are 070’8 0.6 -0.4 0.2 'o' 0204 06 08 1

R T- I T M-S Sy close to one other (L2L3 (E,..- o) E,, ,
JEC (%) corrections are applied)
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25001 R | 3 O
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500~ _ 0.02_5.: " ; , >
0 2'01’5 1'ol§ 3% 10 wrong quark energy °1 0806 04 02 602 O
JEC (%) to be checked!!! —— - éL2L3)}EL2L3
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Outlook: towards CMSSW 2 2 X 224722
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=  With new crab-jobs (wider range, smaller stepsize, 5 different top masses)
=  Apply all selection cuts
= Getresults as function of p,and n
= Try to get a combined measurement of top quark mass and the JEC factors

= CMSSW_2 2 X:
= Make new jet resolutions in CMSSW_2_2 X (from the produced Pat-tupple)

= Develop method to give resolutions to kinematic fit (previous method
obsolete)

= Event hypothesis changes in CMSSW_2 2 X:

= Need to change code (my class inherits from TtSemiEvtSolution class
which is obsolete)

= Use MVA discriminator tools to find the best jet-parton association

= Two main problems last weeks:
= “matrix is singular” in kinematic fit: problem to invert a singular matrix.
> applied another method to invert the matrix solves the problem
> check consistency between 2 methods
= Grid-CRAB problems: Bari server, queue too short, ... (should be solved)
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Smallest AR(jet,u) after cut on Rellso z27/£2&
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ttbar = all ttbar matched with genMuon (AR<0.1)  Plots:

After applying the isolation cuts on the p, ‘Rellso > 0.90

there are still'a lot of QCD events passing. “p" >30GeVic, nf<2.1
Applying a cut on the smallest angle "B/ > 40 GeV, [n|<2.4 (all jets!)
between jets and i1 removes these events. *Normalized

Question: how can we remove these QCD events without removing tthar?

ppMuPt_smallestDR2 3040 090 | _PPMuPt_smallestDR_3040 090 |

E D‘G__ T T T l A E 0-2__ T T T l n

s r — tt0] i : F_ — tt0j -

*  f H # 0.18) H

T 05 —_PPMuPt % ouel| [ —PpMuPtf
E € 014 | LM

S 04 AR<3.0 . S s AR<0.3 ;

- 1 0.12[ =

C 1 Z00m C .

0.3_ ﬁ .

- ] 0.08 I =

021 B 0.06[ .

0.1 B 0.04¢ .

: : "L b

_ I ([T | L 1 bl I | 1 |_ T | L1 Ll — L1 | L1

% 0.5 1 1.5 2 25 % o005 01 o015 02 025 03

smallestDR(jet,mu) smallestDR(jet,mu)

Several variables were studied to check which kind of events are passing the
isolation criterion, but have a muon is closer to the jet than 0.3.

]Nov 24, 2008 — Top Quark Meeting IIHE  Estimating jet energy calibration factors 13/12




e

BRUXELLES BRUSSEL

E. closest jet = not interesting

p; muon = not interesting (higher values for ttbhar compared to QCD)

d0 muon - not interesting (slightly broader distribution for QCD)

number of hits for muon = not interesting

x?Indf for muon - not interesting

# constituents of closest jet = bigger values for ttbar, bigger values for AR>0.3

emEt: energy deposited in ECAL in a cone of 0.3, with exclusion of towers crossed by the
muon + all towers in a cone of 0.07 = not so interesting

HadEt: energy deposited in HCAL in a cone of 0.3, with exclusion of towers crossed by the
muon + all towers in a cone of 0.1 = not so interesting

emEt+hadEt = difference between tthar and QCD
emEt/emEt+hadEt = not so interesting
emS9: energy deposited in 3x3 ECAL crystal shape around the crossed crystal

— nhot so interesting

hadS9: energy deposited in 3x3 HCAL tower shape around the crossed tower

— hot so interesting

emS9+hadS9 - not so interesting
emS9/emS9+hadS9 — difference for AR< or > 0.3, difference QCD/ttbar

MIP compatibility: are the muon deposits consistent with the deposits of a minimum
ionizing particle? — difference for AR< or > 0.3, difference QCDI/ttbar
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_ A # constituents closest jet #7/2¢
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» emEt+hadEt ithe
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emS9/emS9+hadsS9 774

MuPt_ R II 090 3040 DR03
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MIP compatiblility

ithe
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MIP compatibility: are the muon deposits consistent with deposits from a

minimum ionizing particle?
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