Physics in Top Quark decays

- the decay of the top quark in the Standard Model and beyond
- using b-tagging to study the decay t→Wb
 - 1. measuring the branching ratio
 - 2. using BR(t \rightarrow Wb) as a constraint to measure the b-tagging efficiency
- obtaining Jet Energy Scale corrections from mass constraints
- resonances in the top quark pair mass spectrum

In the Standard Model the quarks obtain their mass via EW symmetry breaking

$$\mathcal{L}_{Y} = \sum_{ij} y_{ij}^{D} \overline{D}_{R}^{i} \phi^{\dagger} Q_{L}^{j} + \sum_{ij} y_{ij}^{U} \overline{U}_{R}^{i} \phi^{\dagger} Q_{L}^{j} + \text{h.c.}$$

 \checkmark where ϕ is a doublet under SU(2) and has hypercharge $\frac{1}{2}$

- ✓ when $\phi^{\dagger} = (0 v)$ these interactions give masses to the quarks as $m_q = y_q v_q$
- ✓ collecting all the mass terms leads to the CKM matrix, a unitary matrix that couples top and W to all the down, strange and bottom quarks : A(t→Wq) ∝V_{ta}
- ✓ we can study the Standard Model production of top quarks or top quark pairs

? 'Theorists at work' : replace this structure with something else ...

- **×** most of the times with more fields
- ✓ the top quark couples most strongly to the EW symmetry breaking sector
- **6** The large mass leads to a large top quark width ($\Gamma_t \sim 1.5 \text{ GeV}$)
 - ✓ the top quark lifetime is shorter than the typical hadronization time (Λ_{QCD}^{-1})

 \Rightarrow within the SM = 4 x 10⁻²⁵ s < τ_{hadr} ~ 28 x 10⁻²⁵ s

- ✓ one can study the bare quark properties (no confinement)
- ✓ the weak interactions are strong and the strong interactions are weak...

J.D'Hondt	Physics in Top Quark decays
Vrije Universiteit Brussel	21-27 of October 2009

The decay of the top quark

The LHC data will extend the Tevatron precision reach and allow new topics.

J.D'Hondt
Vrije Universiteit Brussel

Tevatron knowledge

First measurements achieved at the Tevatron (only a selection!)

Tevatron knowledge

First measurements achieved at the Tevatron (only a selection!)

mass (comb) 173.1±0.6±1.1 GeV width < 13.1 GeV lifetime $c\tau_{top}$ <52.2 µm	Parameter	CDF	95% CL	D0
width< 13.1 GeVlifetime $C\tau_{top}$ <52.2 μ m	mass (comb)	173.1±0.6±1.1 G	eV	
lifetime cτ _{top} <52.2 μm	width	< 13.1 GeV		
	lifetime	cτ _{top} <52.2 μm		
charge excl4/3 @ 87% excl4/3 @ 92%	charge	excl4/3 @ 879	% excl.	-4/3 @ 92%
$\begin{array}{ll} BR(t \rightarrow Wb)/ &> 0.61 &> 0.79 \\ BR(t \rightarrow Wq) &\end{array}$	BR(t → Wb)/ BR(t → Wq)	> 0.61		> 0.79
F0 0.66±0.16±0.05 0.49±0.11±0.09	F0	0.66±0.16±0.05	5 0.49	9±0.11±0.09
F+ < 0.27 0.11±0.06±0.05	F+	< 0.27	0.11	±0.06±0.05

 $D0 : m(top) - m(anti-top) = 3.8 \pm 3.7 \text{ GeV}$

eg. arXiv:0906.5273v2

- What is the real theoretical uncertainty (or error even) on m_{top}?
- Which kind of top quark mass do we measure, examples:
 - Pole mass (m_t^{pole}): Breit-Wigner pole
 - IS mass scheme (m^{1S}): threshold mass eg. in e⁺e⁻→ttbar
 - MS-bar mass (m^{MS}_t(µ)): preferred by theorists
- Theoretical differences can be large...
- A calculation from the Tevatron cross section resulted in a 8 GeV difference between the pole mass and the running top quark mass (MS-bar).

	\overline{m} [GeV]	$m_t [{ m GeV}]$
LO	$159.2^{+3.5}_{-3.4}$	$159.2^{+3.5}_{-3.4}$
NLO	$159.8^{+3.3}_{-3.3}$	$165.8^{+3.5}_{-3.5}$
NNLO	$160.0^{+3.3}_{-3.2}$	$168.2^{+3.6}_{-3.5}$

Numbers obtained from the measured Tevatron cross section σ =8.18pb, uncertainties are experimental.

Decay of top quark pairs

Tevatron knowledge

arXiv:hep-ph/0607115v2

- Also new phenomena can be hidden in the top decay...
- Flavour changing processes in the Standard Model

$$J_{\mu}^{+} = \bar{u}_{L} \gamma_{\mu} d_{L} \xrightarrow{\text{mass eigenstates}} J_{\mu}^{+} = \bar{U}_{L} \gamma_{\mu} V_{\text{CKM}} D_{L}$$

$$|V_{\text{CKM}}| = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$= \begin{pmatrix} 0.9738 \pm 0.0005 & 0.2200 \pm 0.0026 & (3.67 \pm 0.47) \times 10^{-3} \\ 0.224 \pm 0.012 & 0.996 \pm 0.013 & (41.3 \pm 1.5) \times 10^{-3} \\ ? & ? & ? \end{pmatrix}$$

- There can be new physics in |V_{tb}|, eg. charged Higgs t→H⁺b or an extended quark flavour section (4th generation)...
- Direct constraints via *b-tagging!!* $R = \frac{\Gamma(t \to Wb)}{\Gamma(t \to Wq(=d,s,b))} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$

CMS PAS BTV-09-001

B-tagging in CMS

 B-tagging tools make use of the Tracking devices to search in a jet for displaced vertices, soft (low p_T) leptons and/or tracks not originating from the primary collision vertex

Example of observables used:

- Impact parameter and its significance
- Decay lengths
- Presence of secondary vertex
- Vertex mass
- Number of tracks at vertex
- Ratio of je energy to energy associated to secondary vertex
- Presence of soft-leptons

Example b-tagger (*track counting*): Jet is b-tagged if at least N tracks have a impact parameter significance above S.

One should not forget to include quality cuts on the tracks to consider in the jet

J.D'Hondt	Physics in Top Quark decays	10
Vrije Universiteit Brussel	21-27 of October 2009	10

B-tagging in CMS

 The performance of these different b-taggers is quantified as a typical hypothesis test.

B-tagging in CMS

• An example (track counting variable)

• These efficiencies depend on the η -value and p_T -value of the jet

J.D'Hondt Vrije Universiteit Brussel

B-tagging in CMS

Comparing all methods (all b-tag discriminators/variables)

- The better algorithm is the most complex one to master, namely the "Combined Secondary Vertex" variable.
- At 60% efficiency the non-bquark efficiency of mis-tag efficiency can vary between 0.4% and 3%.
- Soft-lepton taggers can only reach efficiencies up to ~20% because of the branching ratio of b-quarks into these leptons.

The true performance of the b-tagging algorithms will depend on how

Steep improvement in performance from start to 100/pb

J.D'Hondt
Vrije Universiteit Brussel

Decrease in performance depends of course on the b-tagger used

"Simple secondary vertex" variable most robust (eg. 10/pb)

J.D'Hondt
Vrije Universiteit Brussel

EXAMPLE 1 Measuring the top's branching ratios

<u>CMS PAS TOP-09-007</u> <u>CMS PAS TOP-09-001</u>

- Important to test the $|V_{tb}| \sim 1$ of the Standard Model <u>CMS PAS TOP-09-001</u> (remember Tevatron gives $|V_{tb}| = 1.0 \pm 0.1$... personal poor mans combination as an illustration of the current precision from direct measurements)
- Likelihood fit of the b-tag multiplicity spectra with a function depending

is-tag efficiency ε_{non-b}

Example with di-lepton events

- 1. Choose a b-tagging algorithm and a working point
- 2. If the discriminator value is above a certain threshold then we consider the jet to be tagged
- 3. Count the number of tagged jets per event

J.D'Hondt Vrije Universiteit Brussel **Measuring the top's branching ratios**

Fit function uses the probability P_k of observing k b-tags in an event

The top quark pairs decay to 2 b-jets
Expect 2 b-tags in the event from:

P(t→Wb;t→Wb) ~ R² ε_b² + P(t→Wb;t→Wq) ~ 2 R (1-R) ε_b ε_q + P(t→Wq;t→Wq) ~ (1-R)² ε_a²

 In general the probability to observe k b-tags in the events is:

 $P_k = R^2 P_k(bb) + 2R(1-R) P_k(bq) + (1-R)2 P_k(qq)$

- The probability functions P_k are parametrized by α , ϵ_{b} , ϵ_{q} and R
- The probability α that a jet from a top decay is reconstructed and selected is evaluated from data

J.D'Hondt	Physics in Top Quark decays
Vrije Universiteit Brussel	21-27 of October 2009

Probability that 2, 1 or 0 b-jets are reconstructed and selected

• Obtained from the tail of the $m_{lepton,jet}$ spectrum (\rightarrow wrong b-jets in tail)

J.D'Hondt Vrije Universiteit Brussel

J.D'Hondt Vrije Universiteit Brussel

Measuring the top's branching ratios

- Always check the bias of your method (what you put in, is what you should get out)...
- Also check that your estimator has a linear behaviour with respect to the input parameter value to measure
- This is to be done with simulated events

... also from single-top events

21-27 of October 2009

Vrije Universiteit Brussel

BRUXELLES BRUSSEL					
	1.96 TeV	14 T	ΈV	-	
Single top (s-channel)	0.88±0.12 pb	10±1	pb	(x10)	
Single top (t-channel)	1.98±0.22 pb	245±1	7 pb	(x120)	q va
Single top (Wt channel)	0.15±0.04 pb	60±10) pb	(x400)	W ¹² 21 1
Wjj (*)	~1200 pb	~7500) pb	(x6)	guesses D
bb+other jets (*)	~2.4x10⁵ pb	~5×10	⁵ pb	(x2)	b b prostant
(*) with kinematic cuts in order to better mimic signal Belyaev, Boos, and Dudko [hep-ph/9806332]					
proton q' W	q ← If t-chan an extra µ ⁺ ← High W ⁺ ∨ ← High H	nel, there is light quark P _T muon P _T neutrino	Also	 heavy W' FCNC H[±] directly rel 	→ s-channel → t-channel → Wt-channel lated to $ V_{tb} $ to percent level
g b l	b 🖛 High I	$P_T b$ -quark	(s-cha by PE	annel pref DF scale u	ferred, t-channel dominated uncertainties of ~10%)
proton	$\overline{b} \longleftarrow \overline{b} - qu$	uark jet	$R = \frac{\Gamma}{\Gamma}$	$\frac{(t \to W b)}{(t \to W q)}$	$\frac{ V_{tb} }{ V_{td} ^2 + V_{ts} ^2 + V_{tb} ^2}$
J.D'Hondt		09-005	Physics in	n Top Quark	k decays

21

Using the constraint BR($t \rightarrow Wb$)=1

We can do the inverse: assume |V_{tb}|=1 and obtain the b-tag efficiency

- Extra selection cuts:
- Jets from pile-up vetoed using a track-based method
- Lepton+jets: S/B ~ 60 (50) for μ (e) events (1 b-tag on hadronic side)²⁵⁰⁰
- Fully leptonic (μe): leptons opposite charge \rightarrow S/B \sim 4 (no b-tag)
- Selection of b-enriched sample:
- Several observables x are able to discriminate between good and bad jet associations
- Each $x_i \rightarrow \mathcal{L}_i(x_i) = (S_i/B_i)$, with S_i good and B_i bad jet combinations (back-up 28-33)
- Comb. Likelihood Ratio $\mathcal{L} = \prod \mathcal{L}_i(x_i)$ for each jet combination (35-36)
- With a cut on \mathcal{L} it is possible to increase the b-jet content of the jet sample

CMS Note 2006/013 -∽1fb⁻¹ eμ ∕ltī e+u 3000 It other mww ΞZW Z+jets 2000 ∆R(b-jet,b-parton)<0.4 1500 1000 good 500 comb 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Combined Likelihood Ratio 1800 ⊘ttīe+u 1600 ⊡tt other 1400 WW ⊟ZW 1200

CMS Note 2006/013

Combined Likelihood Ratio

J.D'Hondt Vrije Universiteit Brussel Physics in Top Quark decays 21-27 of October 2009

1000

600

400

200

b-Tag Uncertainty (absolute scale)

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.0

Using the constraint BR($t \rightarrow Wb$)=1

ິິ

5 0.15

0.2

eμ

CMS preliminary

 When a b-tagging algorithm is applied on a sample, a fraction x_{tag} of the jets will be tagged

 $X_{tag} = \varepsilon_b X_b + \varepsilon_c X_c + \varepsilon_1 X_1 = \varepsilon_b X_b + \varepsilon_0 (1 - X_b)$

- For certain values of the cut on \mathcal{L} , $\varepsilon_0(\mathcal{L})$ was determined from simulation
- To find the optimal value for the cut on $\mathcal{L} = \mathcal{L}_{opt}$, the total uncertainty is calculated:

Main systematic uncertainty: ISR/FSR and signal and background cross sections (fully lep)
 ISR/FSR and the b-tag efficiency for tagging the b-jet in the event selection (semilep)
 x_{tag} contributes to the statistical uncertainty

J.D'Hondt	Physics in Top Quark decays
Vrije Universiteit Brussel	21-27 of October 2009

Using the constraint BR(t→Wb)=1

• Etimation of ε_{b} for 1 fb⁻¹:

 $\varepsilon_{\rm b} = 58.0 \pm 2.2 \%$

CMS Note 2006/013

- e sample $\epsilon_{b} = 58.7 \pm 2.6 \%$ • eµ sample $\epsilon_{b} = 59.2 \pm 3.3 \%$
- These results can be combined (systematic uncertainties fully correlated)

µ sample

+ $\epsilon_{\scriptscriptstyle b}$ has to be parametrized as function of $E_{\scriptscriptstyle T}$ and η of the jet for sample independent $\epsilon_{\scriptscriptstyle b}$

J.D'Hondt Vrije Universiteit Brussel

 Also here we can do the inverse: assume the top quark mass as measured by Tevatron experiments and obtain Jet Energy Corrections

- Reconstruct the W boson mass in the t→Wb decay (with W→qq) and measure the shift.
- Transform this into a shift on the energy scale of the individual jets.

$$E_{new} = (1 + \Delta C) \cdot E_{jet}$$

 Statistical precision of <1% can be obtained, but at this precision the delicate systematic effects are important...

• More clever: event-by-event rather than one distribution over all events.

J.D'Hondt Vrije Universiteit Brussel

26

• More advanced, perform an event-by-event kinematic fit on $t \rightarrow Wb$

- Our knowledge of the observed event comes from measured objects in the final state (i = jets, lepton, 'neutrino').
 - * this can be summarized as $\mathbf{p}_i = \{ E_i, \theta_i, \varphi_i \}$ (for example)
 - together with the covariance matrix V_i for each object i
- Extend this knowledge p_i and V_i by assuming some hypothesis for the event

* for example : $m_{jj} = m_W \& m_{jjb} = m_t$

Add Lagrange multipliers λ_k in the χ^2 equation to incorporate these hypothesed constraints in our knowledge of the event ($\Delta p = p^{fit} - p^{measured}$)

 $\chi^2(\mathbf{p}^{\text{fit}}) = \Delta \mathbf{p}^T \mathbf{V}^{-1} \Delta \mathbf{p} + 2 \sum \lambda_k f_k(\mathbf{p}^{\text{fit}}, \mathbf{a})$

- \ast where we have the *m* constraint functions f_k and unmeasured parameters **a**
- * for the true measured and unmeasured parameters $\rightarrow f_k(\mathbf{p}_{true}, \mathbf{a}_{true}) = 0$
- If the constraints are non-linear an iterative procedure is used to solve them
 - * the equation $f_k(\mathbf{p},\mathbf{a})=0$ are linearized in each iteration step (*Taylor expansion*)
 - * the χ^2 equation is minimized ($\partial \chi^2 / \partial p = 0$, $\partial \chi^2 / \partial a = 0$, $\partial \chi^2 / \partial \lambda_k = 0$) and solved
 - * the iteration stops when some pre-defined convergence criteria are fulfilled

A P(χ²) is returned by the kinematic fit, reflecting the probability that the constraints are fulfilled

J.D'Hondt	Physics in Top Quark decays
Vrije Universiteit Brussel	21-27 of October 2009

Jet corrections from top events

CMS PAS TOP-07-004

- Jet resolutions are parametrized versus p_τ and η
- The constraints $m_w^{rec} = M_w^{world}$ and $m_t^{rec} = M_t^{world}$ are true at parton level
- Kinematic fit returns a P(χ^2) for each event reflecting qthe probability that the constraints are fulfilled for this event
- A whole range of JES corrections $\Delta E_{h} \& \Delta E_{i}$ (±50%)
- is scanned for each event (E/|p| constant)
 The best estimate of the JES corrections is found by minimizing the function $\chi^2(\Delta E_b, \Delta E_{i1} = \Delta E_{i2})$

leptonic side \rightarrow event selection/trigger

c,u

- To reduce the process background a tight event selection is applied
- A likelihood ratio is constructed to identify the correct jet combinationA cut on this likelihood ratio is made
- to reduce combinatorial background
- To reduce contributions from misreconstructed events cuts are made on the probability of the kinematic fit

• p₁(µ)>30 GeV.|n|<2.1</p> • µ isolated (back-up 41) h

- non-overlapping jets: $\Delta R(\text{jet i, jet j}) > 1.0$
- •∆R(jets,µ) > 0.5

J.D'Hondt Vrije Universiteit Brussel

Jet corrections from top events

• To identify the correct jet combination four observables are combined into a LR:

J.D'Hondt Vrije Universiteit Brussel

Jet corrections from top events

- For each event we have an estimate of the JES corrections, $\Delta E_{b,i}$ and $\Delta E_{l,i}$ (i=event)
- Events for which $\Delta E_{b,i}$ or $\Delta E_{l,i} > \pm 20\%$ w.r.t first estimate are removed:
- The relative difference between the fitted expectation value of the m_w distribution and M_w^{world} is taken as a first estimate for light jets: ΔE_{l,incl.}
- Difference between MC expectation values of light and b JES corrections (7%) is used to obtain the first estimate for b jets $\Delta E_{b,incl.}$ from $\Delta E_{l,incl.}$
- The $P^{fit}(\chi^2 | \Delta E_b, \Delta E_l)$ -values of the remaining events are translated into χ^2 -values

350

250

200

100

50

 $_{400}$ $\Delta E_1 = -12.9 \pm 0.9 \%$

-20

- The χ²-values are combined and the minimum is searched for
- Results are corrected for the width of pull distributions
- The uncertainty reflects the uncertainty for 100 pb⁻¹ @ 14 TeV

- Method is robust against process and comb. background
- Method is also robust against smeared jet resolutions
- Performance of method depends on ∆m, from Tevatron

TOP-PAS-07-004

J.D'Hondt Vrije Universiteit Brussel

• Also new phenomena can be hidden in the top pair decay...

Lots of theory work needed to control this distribution Also lots of experimental work needed to reconstruct this distribution!

J.D'Hondt Vrije Universiteit Brussel

Several new models predict resonances in this spectrum

Spin	color	parity $(1, \gamma_5)$	some examples/Ref.
0	0	(1,0)	SM/MSSM/2HDM, Ref. [51, 52, 53]
0	0	(0,1)	MSSM/2HDM, Ref. [52, 53]
0	8	(1,0)	Ref. [54, 55]
0	8	(0,1)	Ref. [54, 55]
1	0	(SM,SM)	Z'
1	0	(1,0)	vector
1	0	(0,1)	axial vector
1	0	(1,1)	vector-left
1	0	(1,-1)	vector-right
1	8	(1,0)	coloron/KK gluon, Ref. [56, 57, 58]
1	8	(0,1)	axigluon, Ref. [57]
2	0	_	graviton "continuum", Ref. [17]
2	0	—	graviton resonances, Ref. [18]

Boson-phobic scalar (left) and pseudo-scalar (right)

The decay of the top quark (BSM)

J.D'Hondt Vrije Universiteit Brussel

The decay of the top quark (BSM)

J.D'Hondt Vrije Universiteit Brussel

<u>CMS PAS TOP-09-009</u>

■ When reconstructing the full event one can obtain the mass of the topantitop system and search for resonances X→tt

Trigger on non-isolated muons not to loose the boosted signal...

J.D'Hondt	Physics in Top Quark decays	05
Vrije Universiteit Brussel	21-27 of October 2009	35

The jets from the top quark decays in the event are chosen via a χ² minimization on the top quark and W boson mass (kinematic fit)
 The resonance mass is measured as the Gaussian fitted average

 The jet resolution is relatively improving with ~35% by use of the kinematic fit

The improvement from the kinematic fit visual...

The kinematic fit reduces the bias on the measured mttbar and improves the overall resolution

The new physics is visible above the Standard Model background

Top quark pair resonances

CMS PAS JME-09-001

Reconstructing and identifying boosted top quarks is not easy

How to identify the decay $t \rightarrow Wb \rightarrow qqb$ in this collimated top?

> Reconstruct a "super-jet" with the Cambridge-Aachen clustering algo with R=0.8 in the algorithm's metric

> > $d_{ij} = \Delta R_{ij}^2 / R^2$

Now we have the "super-jet" which should reflect the top quark

 Reverse the clustering sequence, by throwing out clusters which are soft (less then 5% of the "super-jets" p_T) and this to find sub-jets in the "super-jet"

J.D'Hondt	Physics in Top Quark decays	00
Vrije Universiteit Brussel	21-27 of October 2009	39

Resulting top-tagging efficiency reaches ~50% for p_T>700GeV/c

• Mis-tag rate can be controlled via data-driven methods.

J.D'Hondt	
Vrije Universiteit Brussel	

General searches with top events

- Several differential distributions can go beyond testing the Standard Model and are sensitive to new physics
- We need to understand the SM part of the distribution before we start looking in the part sensitive to new physics
- Including the systematic effects...

 $M_T(W)$ [GeV/c²]

 Need to increase the activity and ideas in this direction

J.D'Hondt Vrije Universiteit Brussel

- Di-lepton top quark pairs have a clear topology
 - □ 2 b-jet and 2 isolated leptons with a different charge, selected with a large S/N
 □ exploit the performance of the lepton isolation criteria (CMS Note 2006/024)

• Many important analyses are not well covered today within CMS, hence consider this as a shopping list for newcomers!

- **1.** W polarization (using the $\cos\theta^*$ distribution)
- 2. Spin correlations between the top and anti-top quark
- 3. Mass difference between top and anti-top
- 4. The electric charge of the top quark
- 5. Fourth generation quarks (t')
- 6. The fully hadronic channel
- 7. Using matrix element tools rather than a kinematic fit
- 8. Forward-Backward charge asymmetry
- 9. Top quark width
- 10. ...
- All of these topics cover reconstruction issues, Standard Model issues and can search for new physics phenomena... hence an excellent topic for a small group of students and senior people!
- Most of these analyses are documented at the Tevatron or ATLAS...

J.D'Hondt	
Vrije Universiteit Brussel	

Putting the pieces together...

 Top Quark physics is the key topic for the Tevatron and will be the key physics topic for 2-10TeV LHC collisions
 An understanding on the full process,

from production over properties to decays, has still to arise

- The first measurements at the Tevatron do not reach the precision to discover new phenomena, the LHC data will open a new window on this heaviest quark
- An important ground for understanding the physics and reconstruction tools in hadron collisions

Some important publicity...

J.D'Hondt Vrije Universiteit Brussel