Aim : to estimate, from data, the number of multi-jet events in the context of searches for low mass ttbar resonances (< 1.5 TeV) with 100 pb⁻¹

Outlines :

CMS,

- Technicalities
- Standard ABCD method :
 - Principle
 - Aim and observables used
 - Results
- Conclusions
- More if we have times...

C. Vander Velde, G. Hammad – IIHE – Brussels

Multi-jets background estimation from data

- Customized CMSSW 2_2_7 + PAT
- Background and signal sample :
 - Multi-jet (PYTHIA) "ppMuPt20-15":
 - Filtered at generator level for a muon with $p_T > 15 GeV/c$ and $p_T hat > 20 GeV/c$
 - LO $\sigma(pp \rightarrow \mu + X) = 121675 \text{ pb} (\sim 6M \text{ events} = 49.7 \text{ pb}^{-1}, \text{ rescaled to } 100 \text{ pb}^{-1})$
 - tt+jets (Alpgen)
 - NLO $\sigma(pp \rightarrow tt + jets) = 414 \text{ pb} (\sim 1M, \text{ rescaled to } 100 \text{ pb}^{-1})$
 - W/Z+jets (Alpgen)
 - NLO $\sigma(pp \rightarrow W + jets) = 45600 \text{ pb} (\sim 1M, \text{ rescaled to } 100 \text{ pb}^{-1})$
 - Leptophobic topcolor Z' (MG, provided by S. Perries, IPNL, Lyon)
 - Width = 1% mass
 - LO $\sigma(pp \rightarrow Z' @ 1 \text{ TeV} \rightarrow tt) = 6,04 \text{ pb}$

C. Vander Velde, G. Hammad – IIHE – Brussels

Object selection

- Muon ID :
 - Global & Tracker muon (tracker track matching a segment in the muon system)
 - Chi²/Ndof (global track fit) < 10
 - Number of valid hits (tracker track) >10
 - Impact parameter < 2mm (corrected for beam position offset)
- Jet ID / Fake jet cleaning :
 - Not yet... (Question : is there a simple way to safely remove electrons faking jets ?)
 - For the moment : nb of constituents > 0
- Missing transverse energy :
 - No cut on MET
 - Corrections account for JES and muons passing the MUON ID

- Official Top/V+jets isolation variable :
 - RelIso = (CaloIso+TrackIso)/ p_{T}
 - !! decreasing signal selection efficiency with increasing Z' mass !!
- Alternatives :
 - $\Delta R(\mu, jet)$: angle in eta, phi space between the selected muon and its closest jet
 - Ptrel : muon transverse momentum with respect the axis of this jet

NB : only jets with $p_{_{\rm T}} > 30$ GeV/c are considered

- RelCaloIso = CaloIso/ p_T and RelTrackIso = TrackIso/ p_T
- $|d0|/\sigma$, transverse impact parameter significance ($\sigma = \sqrt{\sigma_{d_0}^2 + width_{beam}^2}$)

Proposed by Riverside's group. Used by Lyon's group for low mass resonances

Signal selection efficiency

- Pre-selection :
 - At least one muon (passing the MuonId requirements) with $p^T>30 \text{ GeV}/c^2$
 - At least four jets with $p^T > 30 \text{ GeV}/c^2$
- Selection efficiency ϵ_x = Nb of events passing the isolation cut X / Nb of pre-selected events

C. Vander Velde, G. Hammad – IIHE – Brussels

ABCD Method

N^{06:0}.025

0.02

0.015

0.01

0.005

- Principle of the method :
 - If X and Y are uncorrelated :

 $N_{C}^{bckgd}/N_{D}^{bckgd} = N_{A}^{bckgd}/N_{B}^{bckgd}$

If the regions A, B and C are background dominated, then : — $N_{B}^{bckgd} \sim N_{b}^{exp}$, number experimentally observed.

- Therefore :
$$N_D^{exp} = N_B^{exp} N_C^{exp} N_A^{exp}$$

- Control of the correlations : •
 - Divide the X axis into N windows : Xⁱ
 - For each X^{i} , calculate the ratio $N^{i}(y>y_{0})/N^{i}_{tot}$
 - Perform the same calculation for the Y axis

p_ [GeV/c]

Event selection/reconstruction

Lyon's group :

CMS

- Event selection for searches for low mass resonances :
 - HLTMu9
 - MuonID + $p_T > 30 \text{ GeV/c}$
 - $\Delta R(\mu, jet) > 0.4 \& p_T^{rel} > 35 \text{ GeV/c}$
 - Veto on a second high- p_T lepton

(muon or electron, $p_T > 20$ GeV/c and RelIso > 0.9)

- At least 4 jets with $p_T > 30 \text{ GeV/c}$
- Event reconstruction :
 - $-\chi^2$ based jet pairing
 - Kinematic fit

- Variables to play with :
 - $P_t^{\,\mu}$
 - $\Delta R(\mu, jet)$
 - $\ p_{_{T}}^{_{rel}}$
 - Number of jets
 - $p_{_{T}}$ of the 4th highest jet

8/12

CMS

Brussels' group :

resonances :

C. Vander Velde, G. Hammad – IIHE – Brussels

Event selection/reconstruction

- No trigger yet.
- MuonID + $p_{_{\rm T}} > 15 \text{ GeV/c}$
- At least 4 jets with $p_T > 30 \text{ GeV/c}$
- Event selection (to be defined) : ٠
 - Muon $p_T > 30 \text{ GeV/c}^2$
 - $\Delta R(\mu, jet)$, $|d0|/\sigma$, RelCalo/TrackIso
- Event reconstruction :
 - No χ^2 based jet pairing (studied but no yet applied) and no kinematic fit (so far...)

- Variables to play with :
 - P_{t}^{μ}
 - $\Delta R(\mu, jet)$
 - $|d0|/\sigma$
 - RelCalo/TrackIso (not usable)
 - Number of jets
 - p_T of the 4th highest jet

- Efficiency not really flat against $\Delta R(\mu, jet)$ but still reasonable...
- Impact on the estimate of the mtt shape : see next slide...

Brussels' group :

CMS

Top quark pair invariant mass

C. Vander Velde, G. Hammad – IIHE – Brussels

- A first step towards a multi-jet background estimate has been made in the context of a search for new physics...
- My « Want to do » list :
 - Finalize the event selection (trigger, event reconstruction...)
 - Check the stability of the result with multi-jet samples generated with MG (samples ready)
 - Produce an estimate for W+jets / tt+jets
 - Quantify the sensibility to new physics and apply it to topcolor Z' searches