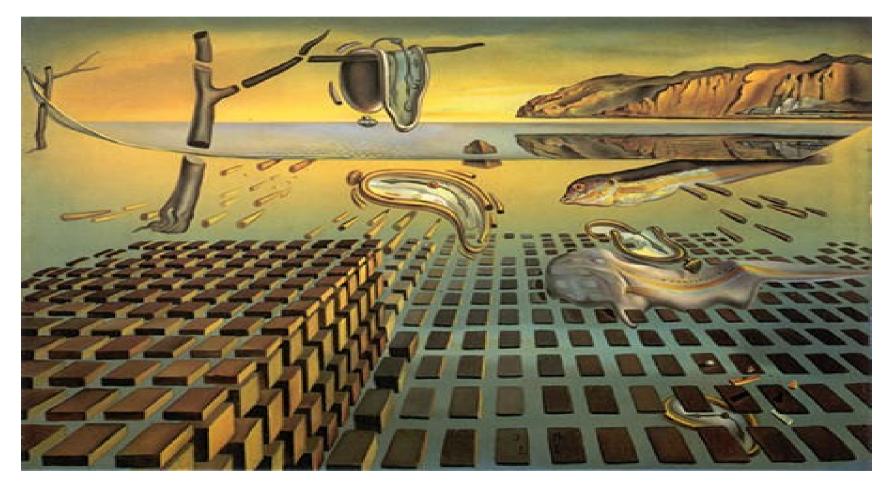

Eric Chabert

Top meeting, IIHE, 6/05/2009

n

Beyond the Standard Model with top quarks



Introduction Z' SUSY Workflow F

Dali's view of BSM !!

All is there:

space-time deformation, symmetry broken super-partners

Introduction	Z'	SUSY	Workflow	Plan
--------------	----	------	----------	------

Introduction

Top can be use as a probe for new physics searches ... because

- Top quark is the heaviest particle of the SM
- heavily coupled to higgs boson (Yukawa coupling)
- play a leading role in many BSM models

New physics can be search in

- production mode
- decay mode
- associated production

Topics:

- Ttbar resonances (Z') $Z' \rightarrow t$ tbar
- SUSY with top stop decay ...
- Fourth family: t' (or b') $pp \rightarrow b'b' \rightarrow W^+W^-t$ tbar
- 4 tops (compositeness): pp → t tbar t tbar
- Charged Higgs

Z'

• ...

PAG involved: Top – SUSY – New Phenomena – Boosted top task force

Actually we are focused on Z' and SUSY searches

n	ro	duc	tion
		auo	

Search for resonances: Z'

Actuality:

350

300

200

150

100

50

Signal (Z') Zjets Wiets

qcd (15GeV) tt (other)

ttbar

Several (4-5) notes in preparation in Boosted Top task force

We are Involved in the semi-muonic channel @ low masses (<1-2 TeV) with Lyon's group

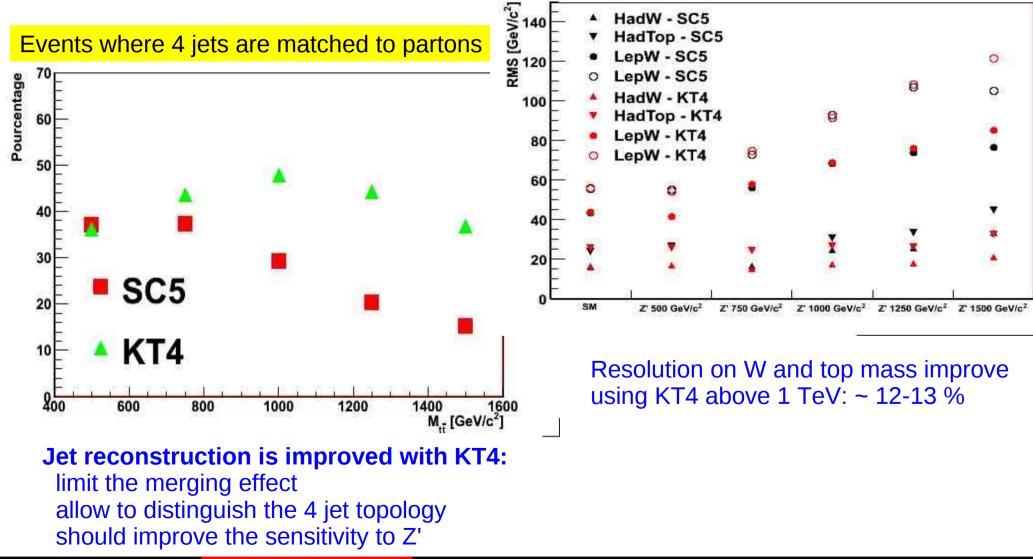
Update:

- Muon quality cut (χ^2 , nof hits, d0)
- Muon isolation $(\Delta R(\mu,j),P_{t}^{rel})$
- 250 • Jet combination (usage of a χ^2 involved until 8 jets
- Reconstruction with a external KinFit
- Samples: 500-750-1000-1250-1500 GeV
- Estimation of QCD background

Improvements:

- selection efficiency (muon isolation)
- purity X² ranking
- Inearity of Mtt reco vs gen and resolution (KinFit)
- A first draft should circulate soon (boosted top top PAG)⁰ 400 600 1000 1200 1400 1600 1800 800

A combination of the analysis/channels should be prepared next weeks



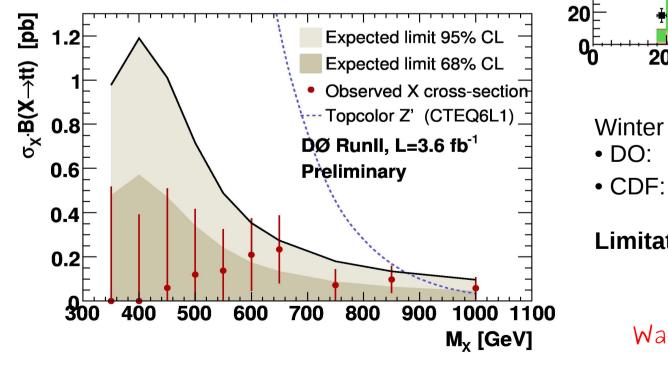
Search for resonances: Z'

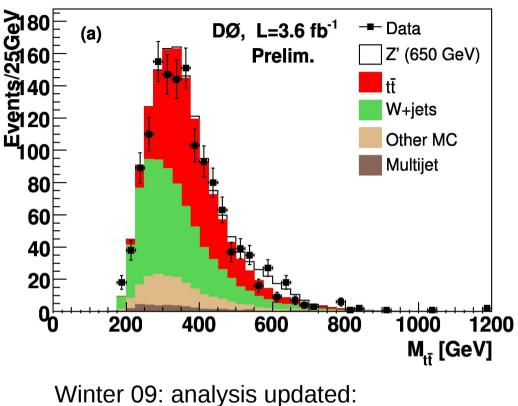
Study of the jet algorithms

Compare SC5 vs KT4

Search for resonances: Z'

Actual status from TeVatron


Last meeting (nov 08)


No excess found

Limits on a Z' leptophobic width $\sigma_{z'} = 0.012 \text{ M}_{z'}$ in a specific model: topcolor assisted technicolor:

• DO: m_z'> 760 GeV @ 2.1 fb-1

• CDF: m_z > 720 GeV @ 1 fb-1

- DO: m_z'> 820 GeV @ 3.6 fb-1
- CDF: no excess @ 2.7 fb-1

Limitation: E(CM) Luminosity

Waiting for LHC startup ...

Introduction	Ζ'	SUSY	Workflow	Plan

Search for SUSY with tops: topology considerations ...

Aim:

Inclusive analysis with top:

looking for SUSY events where an hadronic top (probe) is produced (ex: stop decay) analysis performed in leptonic channel (muon)

selection: 4 jets (3 coming from top)

1 isolated muon (coming from SUSY decay chain)

Main background:

- obviously ttbar (as to be estimated)
- W+jets
- QCD
- ...

How to distinguish SUSY from top:

- excess of MET due to neutralinos
 higher jet multiplicity (#,HT ...)
- difference in the (μ ,"4th jet") system: doesn't come from top decay (m_{τ} (W) ...)
- different event shape (centrality, sphericity ...)

Build variable using that differences and search SUSY in the tails of these variables ... after ttbar estimation !!

Introduction	Ζ'	SUSY	Workflow	Plan

Search for SUSY with tops: event reconstruction ...

Aim

To identify these event we will use an hadronic top as a probe which suppose an event reconstruction

SUSY production:

• high jet multiplicity environment

3 jets coming from top decay are not the 3 leading jets

importance of jet algorithms

• top more **boosted** (higher Pt, decay products more collimated, lowest angle)

cannot play too much with jets Pt constraint

importance of jet algorithms

• top mainly centrally produced cannot play too much with jets Eta constraint

Event reconstruction:

• NN/LR: too much hypothesis dependent (to be avoid for BSM searches)

KinFit: resolution between ttbar & SUSY – no real gain (no resonances)

• χ² sorting more adapted

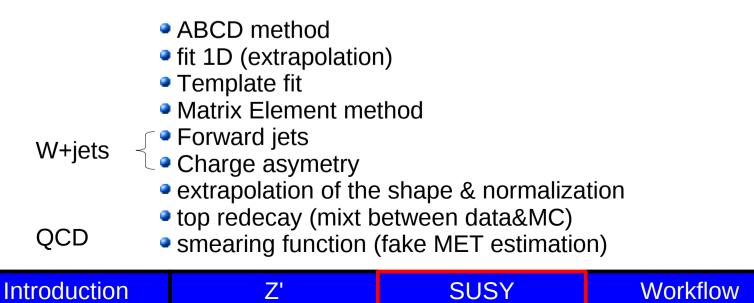
Introduction Z' SUSY Workflow Plan

Search for SUSY with tops: background estimation ...

Ttbar estimation in the tail of variable used for search (ex: MET) is required

Different methods exists

No one is perfect ... We have to find one adapted to our signal


Possibilities:

- estimation from MC/Data (shape and/or normalisation)

Plan

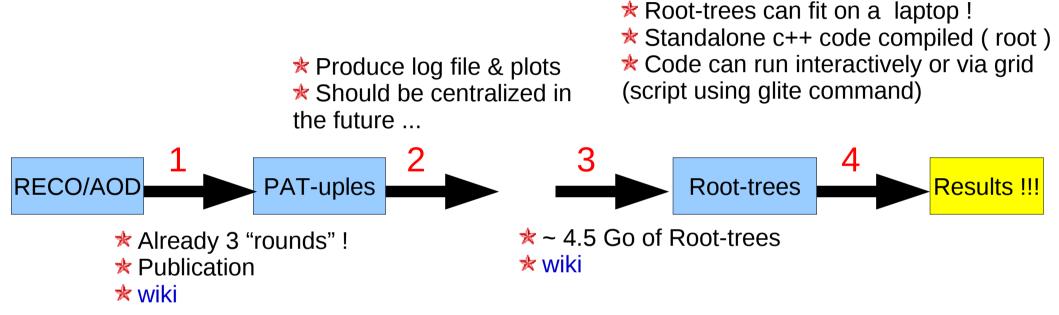
- estimation of only tt or all bkg in one/several steps

Data driven techniques:

Search for SUSY with tops: study @ MadGraph level

Activity started by Alexis Kalogeropoulos Actually a set of SUSY & ttbar samples are available using MadGraph + Pythia (PS) + PGS (detector simulation)

Aim:

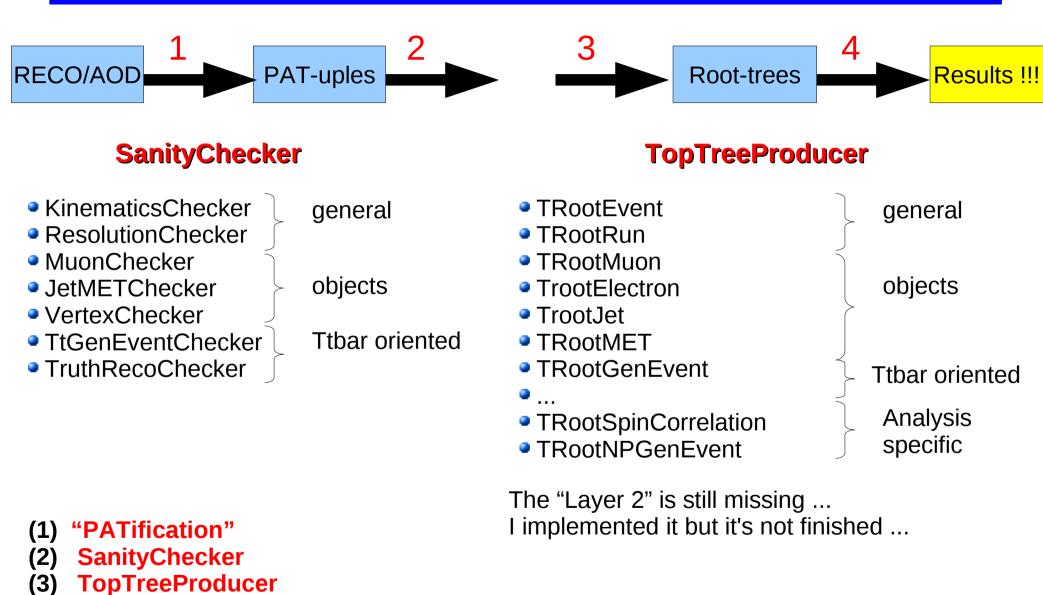

- Benefit of MadGraph flexibility to implement new physics (not only SUSY)
- Analysis easily realized (~ not too much CPU limited ..)
- Scan of parameters can be performed
- Test different variable to distinguish between SUSY & top
- Test ideas @ generator level before full RECO level !

Next step:

- Develop an interface to produce TopTree using MadGraph samples !
- \rightarrow Analysis' tools will be the same @ MadGraph & CMSSW level !!
- Compare variables for SUSY searches

Worflow

Greg/Ilaria/Joris/Petra & I developed tools the last months to have a full analysis strategy in place. It's almost done !! ouff....


- (1) "PATification"
- (2) SanityChecker
- (3) **TopTreeProducer**
- (4) Analysis

Compare to Fwlite:

time compression factor: ~150 data compression factor: ~40

Introduction	Ζ'	SUSY	Worflow	Plan
--------------	----	------	---------	------

Worflow


(4) Analysis

Introduction

Ζ'

SUSY

Worflow

Store all this information in a DB \rightarrow will be done by Olivier: thanks :-)

Ideas:

Webpage: forms

status of the PAT-uples production ...

all the information & links stored (diff DB & links) DB:

Storage: SE for PAT-uples & TopTree

msa3 for logfiles & rootfiles from SanityChecker

Aim: go on the web and in one click find the location of TopTrees to use (previously checked ...) and the "kfactor" for the plot normalisation ...

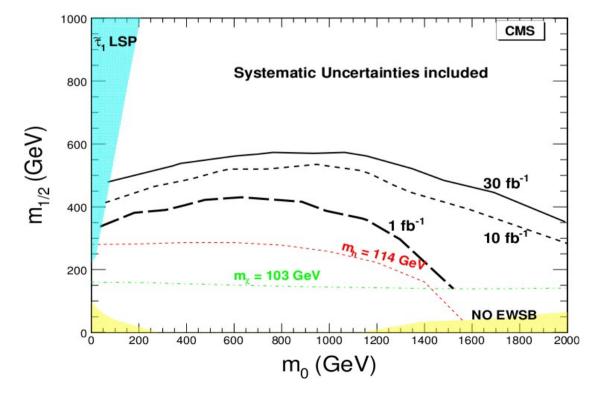
 (1) "PATification" (2) SanityCheckee (3) TopTreeProduce (4) Analysis 	er "webp http://v ucer	i <mark>sed)</mark> :https://mon.iih age" (empty): w3.iihe.ac.be/~echa : cvs directory User	bert/TopGroupPage	
Introduction	Z'	SUSY	Workflow	Plan

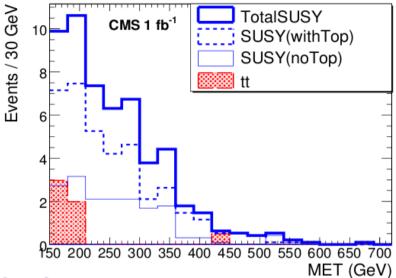
Plan

After weeks of development ... you have more or less all the tools in hand for the analysis ... Now benefits/results should arrive soon

	New physics
Z': final note sho	uld arrive soon for approval
SUSY with top:	reconstruction
	ttbar estimation
	limit on SUSY parameters
	scan of the parameters
More generally:	
comparison of	f variables for BSM search
compare perfo	ormances
background e	
LHC09 TH Instit	ute (may):
	s:from the Tevatron to the LHC" or BSM study should be discussed

- New physics activity in the group started !
- After a development phase results start to be produced ...
- This activity could grow up with new comers (PhD/students ...) ... enough possibilities ...

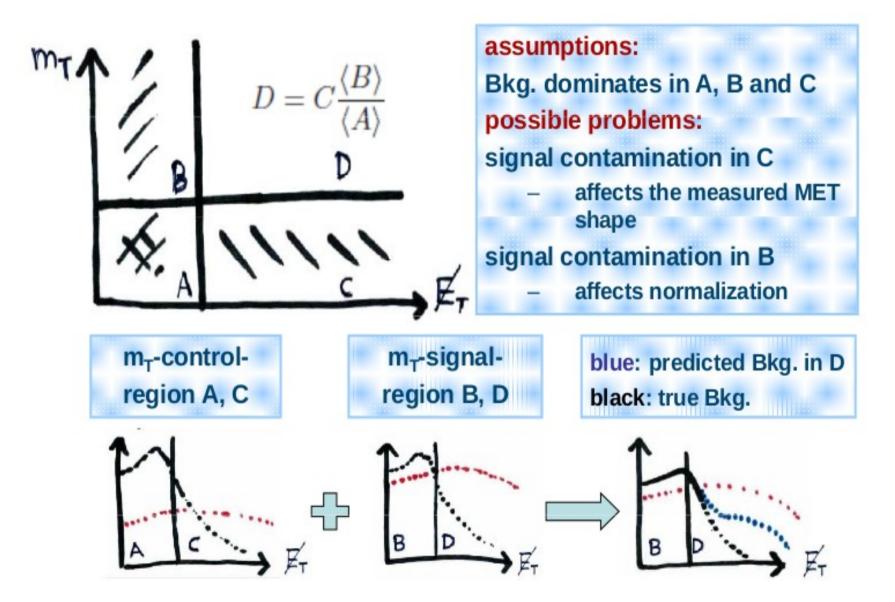

Introduction	Ζ'	SUSY	Workflow	Plan


Backup

Introduction	Z'	SUSY	Workflow	Plan

Search for SUSY with tops: topology considerations ...

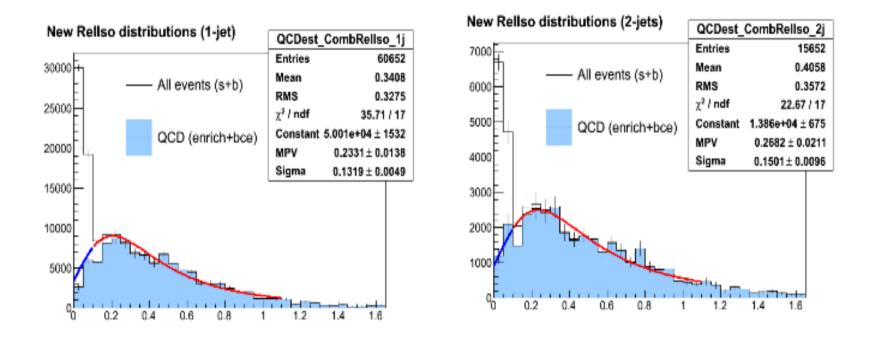
Recherche de SUSY inclusive avec des quarks top. (Modèle mSugra)


Sélection:

- · HLT: 1jet+MET
- \cdot au moins 4 jets Et>30 GeV & $|\eta|$ <2.5
- · au moins 1 b-jet
- ·1 muon isolé Pt>5GeV & |η|<2.5
- · MET>150 GeV

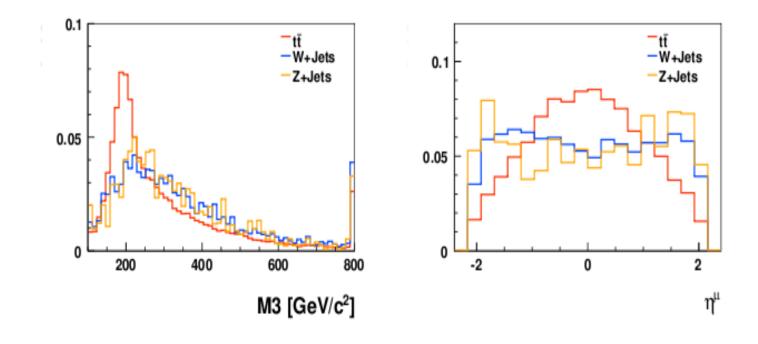
Reconstruction:

- ajustement cinématique (W,top hadronique)
- P(χ2)>0.1
- $\cdot \Delta \Phi(top, MET) < 2.6$


ABCD

Introduction Z' SUSY Workflow PI

1D fit


- I repeated the studies using new RelIso.
- I found Landau function give the most optimal results.
- If we restrict ourselves to a fixed range for different njet bins, then the optimal range is 0.1 to 1.1.

In	tro	$\mathbf{\alpha}$	CTI	on
	$\mathbf{U}\mathbf{U}$	uυ		
		0.0		••••

Template fit

- Variables for the fit need to have different shapes for Signal and Background
- Used variables: $\eta(\mu)$ and M3, where M3 is the inv. Mass of those three (out of all) jets with the highest vectorial summed E_T
- Similar shape for W/Z+Jets, use only W+Jets template

Introduction Z' SUSY Workflow Pla	n
-----------------------------------	---

Matrix element

 Define 3 set of cuts : loose, medium and tight (loose = no isolation, medium = isolation on at least one selected leptons, tight isolation on 2 leptons).

$$N^{t} = N_{S}^{t} + N_{W+jets}^{t} + N_{QCD}^{t}$$
$$N^{m} = N_{S}^{m} + N_{W+jets}^{m} + N_{QCD}^{m}$$
$$N^{l} = N_{S}^{l} + N_{W+jets}^{l} + N_{QCD}^{l}$$

- N_s = signal +physical background (Z+jets, dibosons)
- N_{W+jets} = W+jets events + tt semi-leptonic (1 fake lepton)
- N_{QCD} (2 fake leptons)
- We can introduce the efficiencies to pass from loose to medium and loose to tight cuts: $\varepsilon^{l->t}$ and $\varepsilon^{l->m}$.

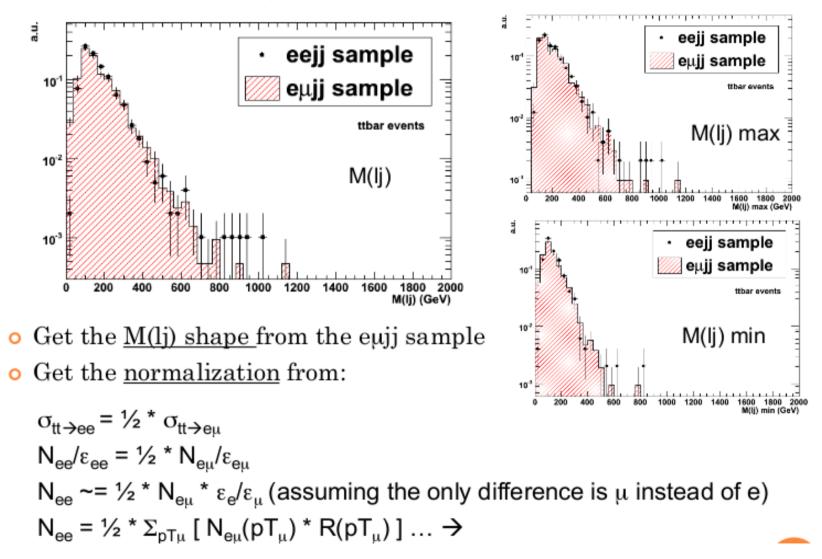
Charge asymmetry

- · W+ and W- cross sections are different at LHC .
- For the single lepton channels, the number of selected events which have a selected lepton (negative charge) is different than the number of selected events which have a selected anti-lepton (positive charge).
- · W+jets background can then be estimated.

$$\frac{N_{+} - N_{-}}{N_{+} + N_{-}} = \frac{\epsilon_{+}L\sigma_{+} - \epsilon_{-}L\sigma_{-}}{\epsilon_{+}L\sigma_{+} + \epsilon_{-}L\sigma_{-}} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}}$$
Assuming that $\epsilon^{+}=\epsilon^{-}$

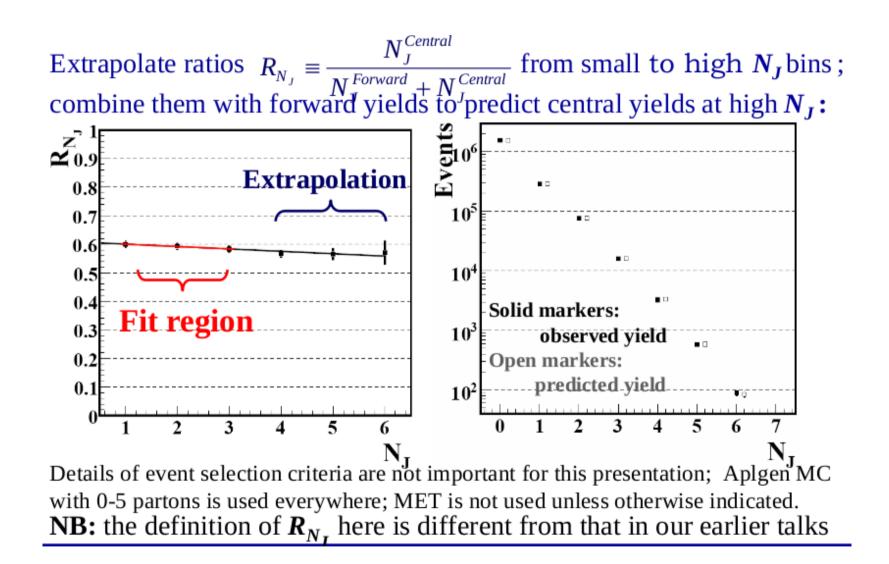
Where N⁺(N⁻) is the number of selected W events with a positive (negative) charge, ε⁺ (ε⁻) are the global selection efficiencies, L is the integrated luminosity and σ⁺(σ⁻) the W⁺(W⁻) cross sections.

$$N_+ + N_- = \underbrace{\frac{\sigma_+ + \sigma_-}{\sigma_+ - \sigma_-}}_{(N_+ - N_-)} (N_+ - N_-)$$


Where (N⁺-N⁻) is estimated from data!

Can also be estimated from data (with some assumptions)

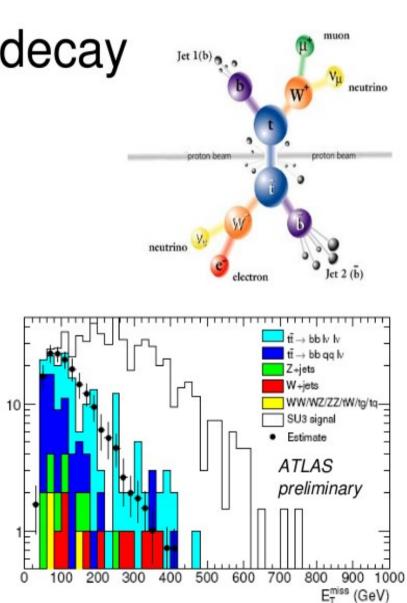
Introduction	Z' SUSY	Workflow	Plan
--------------	---------	----------	------


Shape - Normalisation

The eµjj control sample

Introduction

Forward



Top redecay

Dileptonic tt: top redecay

- Tag seed events (with low E_{T,miss}) containing 2 tops
- Reconstruct 4-momentum of tops
- Redecay/hadronize with Pythia
- Simulate decay products with fast simulation (ATLFAST)
- Remove from seed event original decay products and merge new ones
- Apply standard SUSY selection cuts on merged events
- Normalization to data in low E_{T,miss} region

Statistic uncertainties ~30% Systematic uncertainties ~30% SUSY contamination ~60%

No. Events / 1 fb⁻¹ / 20 GeV