

Brussels Top Quark Achievements

Outline

- introduction
 - top quarks physics at the LHC
- achieved results in Brussels
 - reconstruction topics
 - calibration topics
 - physics topics
- conclusions

The top quark mass is currently measured up to 1.3%!

low top quark mass prefers low Higgs mass

Towards LHC Conditions

At LHC, everything is "Large"

- center of mass energy 14 TeV
- luminosity up to 10^{34} cm⁻² s⁻¹
- "standard candles" are overwhelming
 - W's: ~200/s
 - Z's: ~50/s
- top quark rate huge: 1/s
 - Tevatron: hundreds
 - LHC: millions!
- top quark physics at LHC allows precision measurements
- top quark events become standard candle themselves as they provide interesting control and calibration samples

Top Quark Production at the LHC

Top quark pair cross section

- high LHC energy
 - -> partons taken at low-x
 - -> gluon fusion dominates
- NLO x-sec 830pb

Top quark decay

- SM prediction: BR(t->Wb) ~1
- final state controlled by W decays

Top Quark Pair Decay Modes

Why all this Top-Fuzz?

Joint UCL/IIHE Top Physics Meeting - 08/06/2006

Reconstruction topics

- muon and electron identification in top events (CMS NOTE 2006/024)
- optimal jet reconstruction (Les Houches Proceedings hep-ph/0604120)
- kinematic fitting techniques in top events (CMS NOTE 2006/023)

Calibration topics

- jet energy scale calibration (CMS NOTE 2006/025)
- b-tag efficiency measurements on data (CMS NOTE 2006/013)

Physics topics

- top quark pair cross section in the lepton+jets channel (CMS NOTE 2006/064)
- top mass measurement in the lepton+jets channel (CMS NOTE 2006/066)
- same-charge top pair discovery potential (CMS NOTE 2006/065)

Top Quarks in ...

RECONSTRUCTION TOPICS

Reconstruction of muons and electrons

offline CMS reconstruction (ORCA) does not yield "physics quality" objects

- aim 1: identify the 'true' lepton
- aim 2: build discriminator between W-like and QCD/fake leptons

Identification of muons and electrons

- CMS NOTE 2006/024
- likelihood ratio method to distinguish between 'W-like' and QCD/fake electrons and muons
- sample dependent method: performed in lepton+jets $t\bar{t}$ events
- combination of likelihood ratio S/(S+B) of several observables into a global discriminator
 - transverse momentum
 - isolation energy (calo-towers)
 - isolation p_{T} (tracks)
 - isolation angle (minimum angle to jet)
 - association significance primary vertex
 - for electrons: reconstruction quality variable

backup slides for detail

Combined likelihood ratio

Lepton identification efficiencies

(cut based selection: set of hard cuts on previously defined variables)

Search for jet definition yielding optimal reconstruction

- Les Houches 2005 QCD, EW & Higgs Proceedings: hep-ph/0604120
- optimal jet clustering is looked for from an analysis point of view
 -> reconstruction efficiency is maximized
- optimization versus main algorithm parameters
- iterative cone, kT and midpoint cone algorithms considered
- top-like events with different jet environments considered:

-> 2, 4, 6 and 8 jets

• example:

fraction well clustered and selected jets versus cone ΔR for IC algorithm

Fitting event topologies applying kinematical constraints

- CMS NOTE 2006/023
- using kinematic fit techniques mass constraints can be enforced to the reconstructed event topology
- we used linearized Least-Square method with Lagrange multipliers
- example: top mass when W mass enforced in the t -> Wb -> qq'b decay

• to obtain the same precision without the fit, 5 times more data is needed!

Top Quarks in ...

CALIBRATION TOPICS

Calibration With Top Events

Why calibration with top events

- lots of events + first day physics!
- controllable background
- many interesting objects
 - isolated muons and electrons
 - light and heavy flavour jets
 - missing energy
- constraints from W and top mass
- uses all parts of the detector
- interesting kinematical range

JES calibration with W-mass constraint in $t\bar{t}$ events

- CMS NOTE 2006/025 and Physics TDR Vol.I p. 428-431
- selection of muon/electron + 4 jets final state
- jets are (anti) b-tagged to identify jets from W decay without ambiguity
- reconstructed W mass from these jets is sensitive to Jet Energy Scale
- needed correction for true W mass scales linearly with initial miscalibration

JES calibration with W-mass constraint: results

- very small statistical uncertainty
 - 1 fb⁻¹ : 0.6%
- very few systematic uncertainties
 - pile-up on-off: 3.08%
 - combinatorial background on-off: 0.13%
 - background from other tt-decays on-off: 0.17%
- in real life we will know systematics much better than on-off!

JES calibration: outlook

- inclusive results need to be differentiated
- robustness of the method: dependence on jet environment, jet definition?
- detailed understanding needed of pile-up and of interplay with JES
- get this method data-ready to deliver calibrations to CMS community

This will be the most important JES calibration method in CMS

- b-Tagging efficiency measurement with $t\bar{t}$ events
 - CMS NOTE 2006/013 and Physics TDR Vol.I p. 478-481
 - method designed to measure b-jet tagging efficiency in jet samples from fully leptonic (e+mu) and semileptonic (e+jets and mu+jets) tt decays
 - no use of tracker information for jet sample selection!
 - minimization of total error by selecting a jet sample as pure in b jets as possible with given statistics
 - b-, c- & udsg-content of the enriched jet sample is obtained from MC
 - mistag rates also obtained from MC
 - systematics currently dominated by initial/final state gluon radiation

Joint UCL/IIHE Top Physics Meeting - 08/06/2006

B-Tag Efficiency Measurement

- b-Tagging efficiency measurement with $t\bar{t}$ events: results
 - + differentiation performed vs. jet E_{τ} and eta
 - combined expected accuracies in barrel and endcaps:

b-Tagging calibration: outlook

- systematics are the difficulty: needs more "theoretical" understanding
- difficult work on interpretation of results has yet to start
- get this method data-ready to deliver calibrations to CMS community

This will be the most important b-tag calibration method in CMS

Top Quarks in ...

PHYSICS TOPICS

Event selection for cross section measurement

- CMS NOTE 2006/064 and Physics TDR Vol.II
- signal simulated with PYTHIA (+ full sim.)
- main background is W+jets
 - -> generated with AlpGen + ME/PS matching (+ fast sim.)
 - -> several exclusive final states taken into account
- QCD background is a difficult one to estimate... but can be neglected
- event selection kept simple, as every cut introduces extra systematics

	Signal	Other <i>tt</i>	W+4j	Wbb+2j	Wbb+3j	S/N
Before selection	365k	1962k	82.5k	109.5k	22.5k	5.9
L1+HLT Trigger	62.2%	5.30%	24.1%	8.35%	8.29%	7.8
Pre-selection	45.8%	2.68%	11.7%	3.94%	5.91%	9.1
Four jets $E_T > 30 \text{ GeV}$	25.4%	1.01%	4.1%	1.48%	3.37%	9.9
p_T^{lepton} >20 GeV/c	24.8%	0.97%	3.9%	1.41%	3.14%	10.3
b-tag criteria	6.5%	0.24%	0.064%	0.52%	0.79%	25.4
Kinematic fit	6.3%	0.23%	0.059%	0.48%	0.72%	26.7
Selected cross section (pb)	5.21	1.10	0.10	0.08	0.05	26.7
Scaled L=1 fb ⁻¹	5211	1084	104	82	50	26.7

Method 1: use topological observables

choice of observables à la DØ...

Joint UCL/IIHE Top Physics Meeting - 08/06/2006

Method 1: construct discrimination variable

- combination of observables with likelihood ratio method
- idea of the method: fit signal & background simultaneously

- not as much separation power as in DØ...
- not enough background to make simultaneous fitting idea work

Method 2: event counting

- systematics by far dominating
- CMS prescriptions applied

	$\Delta \hat{\sigma}_{t\bar{t}(\mu)} / \hat{\sigma}_{t\bar{t}(\mu)}$
Simulation samples (ϵ_{sim})	0.6%
Simulation samples (F_{sim})	0.2%
Pile-Up	3.2%
Underlying Event	0.8%
Jet Energy Scale (light quarks)	1.6%
Jet Energy Scale (heavy quarks)	1.6%
Radiation	2.6%
Fragmentation	1.0%
b-tagging	7.0%
Parton Density Functions	3,470
Integrated luminosity (1fb ⁻¹)	10%
Integrated luminosity (5fb ⁻¹)	5%
Integrated luminosity (10fb ⁻¹)	3%
Background level	0.9%
Statistical Uncertainty (1fb ⁻¹)	1.2%
Statistical Uncertainty (5fb ⁻¹)	0.6%
Statistical Uncertainty (10fb ⁻¹)	0.4%
Total Systematic Uncertainty (1fb ⁻¹)	13.6%
Total Systematic Uncertainty (5fb ⁻¹)	10.5%
Total Systematic Uncertainty (10fb ⁻¹)	9.7%
Total Uncertainty (1fb ⁻¹)	13.7%
Total Uncertainty (5fb ⁻¹)	10.5%
Total Uncertainty (10fb ⁻¹)	9.7%

Event selection for mass measurement

- CMS NOTE 2006/066 and Physics TDR Vol.II
- signal simulated with PYTHIA (+ full sim.)
- main background is W+jets
 - -> generated with AlpGen + ME/PS matching (+ fast sim.)
 - -> several exclusive final states taken into account
- more severe selection than for cross section

	Signal	Other $t\overline{t}$	W+4j	Wbb+2j	Wbb+3j	S/N
Before selection	365k	1962k	82.5k	109.5k	22.5k	0.032
L1+HLT Trigger	62.2%	5.30%	24.1%	8.35%	8.29%	0.74
Pre-selection	45.8%	2.68%	11.7%	3.94%	5.91%	1.10
Four jets $E_T > 30 \text{ GeV}$	25.4%	1.01%	4.1%	1.48%	3.37%	1.69
p_T^{lepton} >20 GeV/c	24.8%	0.97%	3.9%	1.41%	3.14%	1.72
b-tag criteria	5.5%	0.21%	0.052%	0.47%	0.70%	3.73
No jet overlap	3.0%	0.11%	0.027%	0.25%	0.44%	3.87
P_{χ^2} -cut 20%	1.4%	0.039%	0.0097	0.061	0.07	5.3
P_{sign} -cut 80%	1.2%	0.025%	0.0085	0.052	0.05	6.8
P_{comb} -cut 50%	0.7%	0.013%	0.0036	0.013	0.	8.2
Scaled L=1fb ⁻¹	588	64	6	2	0	8.2

A likelihood ratio method was constructed to define a probability that a certain event

is the result of a semi-leptonic muon decay (signal) compared to other ttbar-decay channels.

Joint UCL/IIHE Top Physics Meeting - 08/06/2006

Top Quark Mass Measurement

only 2 jet combinations left after hard b-tag criteria: which b-jet is the hadronic top one? ⇒ Likelihood Ratio discriminant developed with four observables:

(solutions of events without good jet-parton matching considered as comb. bgr.)

Joint UCL/IIHE Top Physics Meeting - 08/06/2006

For each event one can define an ideogram $I({p_i}|m_{top})$ as a probability function to observe the measured parameters ${p_i}$ given a certain mass m_{top} .

This ideogram can be assumed gaussian, with δm_{fit} calculated from the (fitted) jet covariance matrices: $I(\{p_i\}|m_{top}) \sim exp[-0.5 \ (m_{fit} - m_{top})^2/(\delta m_{fit})^2]$

or can be scanned imposing different m_{top} hypotheses as an extra constraint in the fit:

 $I({p_i}|m_{top}) \sim {P_{mtop}(\chi^2)}$ with $m_{top} = 125, 130, ..., 225 \text{ GeV/c}^2$

The set of the set of

Top Quark Mass Measurement

To change from the experimental space of m_{top} to the theoretical space of M_{top} , the ideogram of an event is convoluted with a theoretically expected template function $T(m_{top}|M_{top})$:

Top mass estimators

three estimators compared:

-> Gaussian fit, Gaussian ideogram, full scan ideogram

1.14

0.36

Joint UCL/IIHE Top Physics Meeting - 08/06/2006

Expected uncertainty for 1 fb^{-1} (GeV/c²)

Expected uncertainty for 10fb^{-1} (GeV/c²)

1.01

0.32

0.66

0.21

Systematic uncertainties

- many systematic influences were checked according to CMS prescriptions
- effect of light and b-jet energy scale added linearly
- statistical uncertainty on shifts very small due to large MC samples

		Alternative Selection		
	Gaussian Fit	Gaussian Ideogram	Full Scan Ideogram	Full Scan Ideogram
	Δm_t	Δm_t	Δm_t	Δm_t
	(GeV/c)	(GeV/c)	(GeV/c)	(GeV/c)
Pile-Up (30% On-Off)	1.9	1.4	1.2	1.2
Underlying Event	1.0	0.7	0.5	0.5
Jet Energy Scale (2%)	3.8	1.5	1.3	1.2
Radiation (pQCD)	0.8	0.3	0.2	0.2
Fragmentation	0.4	0.4	0.3	0.3
b-tagging (5%)	2.0	0.5	0.3	0.3
Background	0.4	0.4	0.4	0.4
Parton Density Functions	0.1	0.1	0.1	0.1
Total Systematical uncertainty	4.9	2.3	1.9	1.9
Statistical Uncertainty (10fb ⁻¹)	0.32	0.36	0.21	0.31
Total Uncertainty	4.9	2.3	1.9	1.9

only using events where iterative cone,

kT and midpoint cone jets coincide

JES systematics

detail on light and b-JES systematics

Joint UCL/IIHE Top Physics Meeting - 08/06/2006

Systematics projected in time

main uncertainty from b-jet energy scale

		Alternative Selection		
	Gaussian Fit	Fit Gaussian Ideogram Full Scan Ideogram		Full Scan Ideogram
	$-m_{*}$	$-m_{*}$	$-m_{*}$	$-m_*$
	(GeV/c∸)	(GeV/c∸)	(GeV/c²)	(GeV/c∸)
Pile-Up (5% On-Off)	0.32	0.23	0.21	0.21
Underlying Event	0.50	0.35	0.25	0.25
Jet Energy Scale (1.5%)	2.90	1.05	0.96	0.90
Radiation (pQCD)	0.80	0.27	0.22	0.20
Fragmentation	0.40	0.40	0.30	0.30
b-tagging (2%)	0.80	0.20	0.18	0.18
Background	0.30	0.25	0.25	0.25
Parton Density Functions	0.12	0.10	0.08	0.10
Total Systematical uncertainty	3.21	1.27	1.13	1.07
Statistical Uncertainty (10fb ⁻¹)	0.32	0.36	0.21	0.31
Total Uncertainty	3.23	1.32	1.15	1.11

1 GeV uncertainty can be reached with a good detector understanding

(this will be a flagship analysis in early and later LHC days)

Looking for an excess of SM same charge top pair expectation

- CMS NOTE 2006/065 and Physics TDR Vol.II
- corresponds to search for same-charge signal with same kinematics
- three fully leptonic final states considered: mu+mu, e+mu and e+e
- perform easy selection, using the powerful lepton likelihood:

scaled to 1fb ⁻¹	μμ	µe and ee	$tt \rightarrow \tau + X$	Other #	$W^{\pm}W^{\mp}$	Z + jets	S/N
Before selection	6915.0	20745.0	34606.2	485973.2	189951.7	578033.3	0.0078
Trigger	6114.7	16314.8	17415.6	100137.2	41288.4	266366.7	0.017
Two jets $E_T > 25 \text{ GeV}$	4398.2	11982.7	13560.9	93858.2	20593.8	66146.7	0.032
b-tag criteria	989.8	2485.4	2289.6	8784.7	133.5	240.0	0.13
Two leptons identified	888.2	30.1	375.8	801.6	1.7	73.3	1.30
Two leptons selected (LR and p_T)	481.5	0.07	48.4	3.01	0.4	53.3	4.7
Efficiency (in %)	6.96	0.0003	0.14	0.0006	0.00022	0.0092	
Opposite-sign	481.3	0	48.3	2.19	0	53.3	
Same-sign	0.2	0.07	0.1	0.82	0.4	0	

- "wrong" charged leptons can be fakes or charge mis-id'd leptons
- e+e and e+mu final states have many more fakes from electrons

Calculation of the same-sign/opposite sign ratio

results: $R^{\mu\mu} = 0.0027 \pm 0.0007$ $R^{ee} = 0.0389 \pm 0.0033$ $R^{e\mu} = 0.0128 \pm 0.0013$

Discovery reach

- discovery when 5σ deviation
 from expected value R
- systematics from taus or Z+jets uncertainties negligible
- back-of-the-envelope: no systematics expected from knowledge of charge mis-id

significance vs. SS tt x-sec.

Conclusions

- current Brussels top quark achievements are diverse, but all profit from common tools and know-how, technical and physics-wise
- reconstruction topics of top quark events
 lepton identification, optimal jet reconstruction, kinematic fitting
- calibration topics in top quark events
 - jet energy scale calibration, b-tag efficiency measurements
- physics topics in top quark events
 - top pair cross section, top mass measurement, same sign top visibility
- all results published in CMS Notes and Physics TDR Vol. I & II

BACKUP SLIDES

Transverse momentum

logarithm of the transverse momentum of the lepton

Isolation energy

- energy deposited in ECAL+HCAL in a half cone $\Delta R=0.3$ around the impact point of the lepton on the calorimeter surface
- the half cone taken at ϕ -side where more neutrals from a jet are expected

Joint UCL/IIHE Top Physics Meeting - 08/06/2006

Isolation $p_{\scriptscriptstyle T}$

- logarithm of the sum of the p_{τ} of the tracks in a cone $\Delta R = 0.3$ around the lepton, excluding the lepton track (-1 if no tracks)
- tracks are required to be associated to the primary vertex

Joint UCL/IIHE Top Physics Meeting - 08/06/2006

Isolation angle

- minimal angle in euclidian space between the lepton and a jet
- jets are clustered excluding a small cone around the lepton

Primary vertex significance

 significance of the z-distance between the reconstructed primary vertex and the point of closest approach of the lepton to this vertex

Reconstruction quality

 likelihood ratio discriminator to suppress fake electrons from jets (ElectronLikelihood in ORCA, see e-gamma webpage)

