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Abstract
Robust vertex fitting algorithms are expected to improve the knowledge of the vertex position and of its uncertainty, in the presence of mis-measured or mis-associated tracks.

Such contaminations are likely to happen in high luminosity HEP experiments. We have performed a simulation study of the sensitivity of two types of robust algorithms : a trimmed
least-squares estimator and an adaptive estimator. Their statistical properties are studied as a function of the source and the level of contamination, and compared to the results
obtained with classical least-squares estimators.

1 Introduction

Vertex fitting usually relies on Least-Squares minimization techniques.
This technique is statistically efficient and unbiased as long as the ver-
tex measurements, i.e. the tracks, have Gaussian and perfectly known
uncertainties, and as long as all tracks do originate from the fitted ver-
tex.

However, in experiments or in detailed simulations, track parameter
pulls very often exhibit some non-Gaussian tails. These are due either
to non-Gaussian multiple Coulomb scattering and detector resolutions,
or to imperfect modelling of the detector material and resolutions lead-
ing to an imperfect estimation of the track parameter error matrix. In
addition, at high luminosity hadron colliders like the LHC, interesting
physics (Higgs, SUSY, top,...) can manifest itself through short-lived
particles like  -mesons or � -leptons in the final state. The decay vertex
of such particles is difficult to separate from the primary vertex, leading
to mis-associations of tracks to vertices.

In estimation theory such contaminations are called outliers. Let
us denote tracks with a wrong covariance matrix as Type-1 outliers,
and tracks originating from a different vertex as Type-2 outliers. The
Least Squares estimator ceases to be unbiased as soon as the measure-
ment sample is contaminated. Robust estimators, unsensitive to out-
lying measurements, were proposed for vertex fitting in for example
CMS [1].

2 Vertex fit algorithms

Fitting the vertex position consists in finding the vertex coordinates�� which minimize a function � of the reduced distances between the
tracks and the fitted vertex. When all tracks have known Gaussian un-
certainties and actually originate from the vertex, the function � which
yields an efficient and unbiased estimate for

�� is the sum of the squared
reduced distances. This is the well-known Least Sum of Squares, or
Least Squares (LS) technique. In this case
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The function � is the measurement function which transforms the vec-
tor of track parameters

�� � into a two-dimensional constraint on the ver-
tex coordinates. The matrix

�
is the Jacobian matrix ?A@B?C@D and the matrix

product
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represents the weight of the constraint � � �� � � in the
vertex fit. In the theory of Optimal Estimation this is known as the
Kalman formalism. A more complete formulation of Kalman vertex
fitting can be found in [2].

To simplify the discussion let us formulate the problem in one dimen-
sion. The function to minimize reads in the Least Squares case:
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The robustness of an estimator can be defined as the sensitivity of the
fit statistics (goodness-of-fit, resolution, uncertainty estimation and bias
on the fitted parameters) to the presence of outliers.

This study considered two robust estimators:H The Least Trimmed Sum of Squares (LTS) algorithm discards the I
out of * tracks which have the largest distance relative to the vertex.
The ratio J � I KL* is called the trimming fraction and is a free input
parameter of the algorithm. The default trimming fraction is 20%.H The Adaptive algorithm downweights distant tracks by a factor
which is a sigmoı̈dal function of the reduced distance to the vertex:

M � �ON � � � P
QSROTUTWV

P
QSR TUTWV X P

QSR TY[ZO\^]`_T`V
a ' $ (1)

where N � � � � � � � � K E � is the reduced distance of track
&
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is the distance where the weight function drops to 0.5 and g is the
parameter controlling the sharpness of the drop.

Both robust algorithms are iterative and can actually be formulated
as iterative reweighted Least Squares algorithms, with the function to
minimize at iteration J :
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with weights M h� � M h� �ONmh  "!� �
computed according to the vertex posi-

tion at iteration J � ' . In the case of the LTS algorithm, the weights
assume discrete values 0 or 1.

3 Toy Model : the VertexGun Monte Carlo

The interpretation of the envisaged results concerning the vertex fitting
algorithms is simplified by using a new developed Monte Carlo track
generator rather than complex real physics events. This simplified setup

is illustrated in Figure 1. The statistical properties of the different vertex
estimators are studied by introducing a known contamination of outliers
(Type-1 or Type-2) in the track sample. For each simulated vertex both
the number of tracks and the fraction of inlying to outlying tracks are
configurable.
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Figure 1: Illustration of the VertexGun parameters.

The tracks are uniformly generated with a momentum between 1 and
30 GeV/c within a cone with an opening angle 9wv equal to 1.6 rad in
the direction around the x-axis (i.e. the boost direction). The 4 Tesla
magnetic field is oriented along the z-axis. The effect of the track re-
construction is simulated by smearing the track parameters with a 5-
dimensional Gaussian distribution. The smearing of the impact param-
eters ( x�yWz{n5|}y`z ) for inliers is done with a fixed spread of 50 ~ m.H Type-1 outliers are simulated as the inliers but by smearing their im-

pact parameters with a spread of J����S���  "! k��}� ~ m, while the same
covariance matrix is used for both inliers and outliers in the com-
putation of the vertex position. This simulates outliers which are
thought to be J �������  "! more precise than they truly are. The outliers
of Type-1 can perturb the pull distribution of the vertex estimator and
they can reduce its resolution.

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

0 5 10 15 20 25 30 35 40 45 50

N=20 and σO/σI = 3
Adaptive
Trimmer
Linear (LS)

R
M

S
 o

f 
p

u
ll 

(x
)

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

0 5 10 15 20 25 30 35 40 45 50

Percentage of outliers (%)

R
M

S
 o

f 
p

u
ll 

(y
)

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40 45 50

N=20 and σO/σI = 10
Adaptive
Trimmer
Linear (LS)

R
M

S
 o

f 
p

u
ll 

(x
)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5 10 15 20 25 30 35 40 45 50

Percentage of outliers (%)

R
M

S
 o

f 
p

u
ll 

(y
)

Figure 2: The RMS of the pull distribution (
� D=� \  D=����� �0�%� � \ ) of different vertex

estimators as a function of the fraction of Type-1 outliers in the sample of in total 20

tracks. This both in the direction longitudinal and transversal to the global boost of

the tracks. The triangles indicate the results obtained at other values of the otherwise

fixed trimming fraction, being 10%, 30% and 40%. On the left the coordinates of the

outliers are smeared 3 times broader than the inliers ( h��%�O��� Qw��� � ), while on the right

they are smeared 10 times broader( h��%�O��� Qw��� !��
).
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Figure 3: The RMS of the residuals distribution ( D2� \  D������ ) of different vertex es-

timators as a function of the fraction of Type-1 outliers in the sample of in total 20

tracks. This both in the direction longitudinal and transversal to the global boost of

the tracks. The triangles indicate the results obtained at other values of the otherwise

fixed trimming fraction, being 10%, 30% and 40%. On the left the coordinates of the

outliers are smeared 3 times broader than the inliers ( h �%�O��� Qw� � � ), while on the right

they are smeared 10 times broader ( h��5�0��� Q:��� !c�
). The results are compared to the

MVB obtained with no outliers and using the LS vertex fitter.

H Type-2 outliers are simulated by generating a secondary vertex sepa-
rated with a distance  j¡ from the primary one along the y-axis. This
is a worst case scenario since outliers from the same secondary vertex
attract the fitted vertex towards their vertex, introducing a bias on the
estimation of the primary vertex. Such outliers are called leverage
points as they bias the LS estimate by a quantity which is propor-
tional to  i¡ . Also the resolution of the vertex position estimator can

be degraded by the presence of Type-2 outliers.
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Figure 4: The average bias on the vertex position estimated with different algorithms

as a function of the fraction of Type-2 outliers in the sample of in total 20 tracks.

This both in the direction longitudinal and transversal to the global boost of the tracks

and for several separations ¢�£ between the primary (inliers) and secondary (Type-2

outliers) source of tracks.

In each case 10000 events are simulated in which the vertex position
and uncertainty on the position are estimated. For a perfect fit algo-
rithm the observed 6 7e¥¤S4 should follow a uniform probability distribu-
tion P( 687¦L§©¨«ª 687e¥¤S4 ) between 0 and 1. The average of this distribution
over the 10000 events should therefore be 0.5. The pull distribution
should follow a normal Gaussian distribution centred at zero and with
unity width (i.e. Root Mean Square or RMS = 1). The bias is esti-
mated from the shift in the

��L¬ + � ��S � ¦ distribution (the distribution of
the residuals) away from zero. The resolution is estimated as the width
of a Gaussian fit on this distribution. The fit with a Gaussian function is
motivated by the Gaussian smearing which is applied on the track pa-
rameters. The obtained resolution can be compared with the Minimum
Variance Bound (MVB) resolution which reflects the optimal informa-
tion present in the events.
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Figure 5: The average ® T probability of different vertex fitters over all events as a

function of the fraction of Type-1 (left) and Type-2 (right) outliers.

4 Conclusion

It was found that the most robust algorithm is provided by the adaptive
fitter, while the LTS fitter performes equally well only when the trim-
ming fraction is set equal to the apriori unknown number of outliers
associated to the vertex. The improvement of using robust fitters be-
comes more pronounced when the track parameters of the outliers are
more different from the inliers as it becomes easier to reject them from
the track sample. This was observed for track multiplicities associated
to the vertex ranging from 3 to 20.

The above study was performed to understand the major properties
and features of the different vertex fitting algorithms. In a real physics
case at for example the LHC we will observe much more complicated
events. Hence one should execute a certain vertex finder which asso-
ciates tracks to possibly different vertices, before starting the fit to esti-
mate the vertex position. In a following paper the statistical properties
of the vertex estimators will be studied at the level of detector simulated
tracks in realistic �¯� ( °C±° events.
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