

Current Status of the Brussels top quark group

Jan Heyninck, J. D'Hondt, S. Lowette, P. Van Mulders, G. Hammad

Outline

CURRENT PHYSICS STUDIES:

"SAME SIGN" TOP QUARK PAIRS IN m-SUGRA

tT - RESONANCES (e.g. Z-PRIME)

B-JET CALIBRATION USING tT EVENTS

MAIN SOFTWARE EFFORT:

TRANSITION TO THE NEW SOFTWARE FRAMEWORK

"Same-sign" observability ...

"Same-sign" in m-SUGRA

- ✓ various exotic models predict X→tt: technicolor based, prediction of a new strong interaction or m-SUGRA:
 - possible production of same-sign top pairs via the decay of a gluino pair

 $pp \rightarrow \tilde{g}\tilde{g} \rightarrow \tilde{t}\tilde{t}bb \rightarrow ttbb+MET$

- σ x BR dependent on 5 m-SUGRA parameters tg β , m_A, sig μ , m_{1/2}, m_b (calculated with ISAJET)
- First aim: what part of the parameter space is observable? Remember, with 30fb⁻¹ of statistics, a cross-section of ~1pb was needed to extract new physics from the SM background (assuming same topology) 3σ & m_Avalues

 5σ

⊳ mր

REMARK: further event selection cuts on extra jets or MET might lower the 1pb threshold!

Search for tT-resonances

✓ Does something new produce top pairs @Tevatron ($X^0 \rightarrow tT$)?

Search for X→tT in Brussels

- my means of full reconstruction of the tT invariant mass making use of all the reconstruction tools described by Steven, except a KinFit (convergence rate too low)
- ✓ use case: Technicolor Z', generated at different masses without $\gamma^*/Z^0/Z'$ interference

Possible improvements: increase the KinFit convergence rate & exploit other jet dustering algo's

in situ b-JES calibration

Inclusive:

- 1. first "post-calibrate" light jets using light jet calibration as already mentioned
- 2. apply relative energy shift $\Delta C_{_{\rm B}}$ on hadronic b-jets, keeping jet mass constant
- 3. calculate m_{top} for each ΔC_{B}
- 4. fit each of the 21 obtained m_{top} -spectra gaussian
- 5. extract the $\Delta C_{\rm B}$ resulting in a non biased m_{top}-estimate relative to the world average

(Analysis already started in ORCA)

in situ b-JES calibration

=> bias of only 1.35%

Differentiated vs. E_T

comparison between the true b-jet calibration curve (E^{cal}/E^{parton} vs. E^{cal}) with 6 measured ($E_{T.mean}^{i}$, $\Delta C_{b}^{meas,i}$) pairs: ор Ш /uotuned Ш 1.3 Fit function: $[0] + [1] \cdot E_{T}^{cal} + pow(E_{T}^{cal}, [2])$ we had Eparton equal to 1.2 $(1 + \Delta C_{h}/100).E^{cal}$ 1.1 < Ecal/Eparton>i = 0.9 $1/(1 + \Delta C_{b}^{meas,i}/100)$ 8.0 [0] = (-1.74 + / -0.58)[0] = (-1.19 + / - 0.05)[1] = (-0.0084 + / -0.0071)0.7 [1] = (-0.0053 + / - 0.0005)[2] = (0.282 + - 0.076) $[2] = (0.223 \pm 0.008)$ 0.6 0.5 40 60 80 120 100 140 E, MCcal (GeV)

=> looks promising, however, still a lot of work to make this method robust to systematics!

Transition to the new framework

- thanks to our GRID-support (Stijn De Weirdt) we were already able to produce our first 100k of tT-events in the new framework using CRAB and the GRID
- ✓ local samples help us a lot when porting elder code to the new framework
- ✓ already in place:
 - extraction of the MC truth (decay, particles, vertices)

Whadronisch

250

200

150

- jet reconstruction & calibration
- building of jet matching solutions
- jet resolutions
- Kinematic Fit
- ✓ first results...

Louvain-La-Neuve, 8th of June 2006

htemp

Entries

Mean

RMS

10/10