Top Quark Physics in CMS

Jorgen D'Hondt

The Top Quark in the Standard Model

cfr. presentation of Roberto Tenchini

Top quark pair cross section

CMS Preliminary, $\sqrt{s} = 7 \text{ TeV}$

CMS Preliminary, $\sqrt{s} = 8 \text{ TeV}$

Jorgen D'Hondt - Vrije Universiteit Brussel

Top quark pair cross section

Top quark pair cross section

Di-lepton

Top quark pair + jets cross section

 $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj) = 0.022 \pm 0.004 (\text{stat.}) \pm 0.005 (\text{syst.}) \text{ at } p_T > 40 \text{ GeV}/c = 0.013 \pm 0.002 (\text{MadGraph})$

Top quark pair + Vector Bosons cross section

Presentation from A. Jafari on "Single-top"

9

Single top quark cross section (t-channel)

(Ŭ)

ATLAS+CMS Preliminary, $\sqrt{s} = 8 \text{ TeV}$

Single top quark (tW) cross section

SM(Q) = +2/3

Top quark mass

CMS Preliminary, 1s = 7 and 8 TeV

CMS PAS FTR-13-017

Top quark mass prospects

CMS PAS FTR-13-017

Top quark versus anti-quark mass Ideogram method

$$\mathcal{L}_{event}(x; y \mid m_{t}) = f_{t\bar{t}} \underbrace{P_{t\bar{t}}(x; y \mid m_{t})}_{P_{t\bar{t}}(x; y \mid m_{t})} + (1 - f_{t\bar{t}}) \underbrace{P_{bkg}(x)}_{P_{bkg}(x)},$$

$$\underbrace{P_{t\bar{t}}(x; y \mid m_{t})}_{P_{bkg}(x)} = P_{t\bar{t}}(n_{b}) \cdot P_{t\bar{t}}(q^{\ell}) \cdot \underbrace{P_{t\bar{t}}(x_{mass}; y \mid m_{t})}_{P_{bkg}(x)},$$

$$\underbrace{P_{bkg}(x)}_{W_{i}} = P_{bkg}(n_{b}) \cdot P_{bkg}(q^{\ell}) \cdot P_{bkg}(x_{mass}),$$

$$w_{i} = \exp\left(-\frac{1}{2}\chi_{i}^{2}\right)w_{b},$$
Parameters in the kinematic fit
Probability of btagging $w_{b} = \prod_{j} p^{j},$

$$\underbrace{P_{t\bar{t}}(x_{mass}; y \mid m_{t})}_{Gauss distr} = \sum_{i=1}^{12} w_{i} \left(f_{gc} \int dm' G(m_{i} \mid m', \sigma_{i}) B(m' \mid m_{t} \Gamma_{t}) + (1 - f_{gc}) W(m_{i} \mid m_{t})\right)$$
Gauss distr. Breit-Wigner distr. Wrong jet combinations

Top quark versus anti-quark mass

Calibration of the properties of the M_t estimator

$\Delta m_{\rm t} = -272 \pm 196 \, ({\rm stat.}) \pm 122 \, ({\rm syst.}) \, {\rm MeV}$

Dominated by statistical uncertainties, hence need measurement at 13-14 TeV

Jorgen D'Hondt - Vrije Universiteit Brussel

Di-lepton

Differential cross-sections in top quark events

Region of extra (b-)jets

Di-lepton

Differential cross-sections in top quark events

Lepton+jets

Differential cross-sections in top quark events

Region of extra (b-)jets

Lepton+jets

Differential cross-sections in top quark events

Jorgen D'Hondt - Vrije Universiteit Brussei

W helicity (in top quark pair events)

(Ŭ)

$$\rho(\cos\theta_l^*) \equiv \frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_l^*} = \frac{3}{8} (1 - \cos\theta_l^*)^2 F_L + \frac{3}{8} (1 + \cos\theta_l^*)^2 F_R + \frac{3}{4} \sin^2\theta_l^* F_0$$

$$\mathcal{L}_{tWb}^{anom.} = -\frac{g}{\sqrt{2}}b\gamma^{\mu}(V_LP_L + V_RP_R)tW_{\mu}^{-} - \frac{g}{\sqrt{2}}b\frac{i\sigma^{\mu\nu}q_{\nu}}{m_W}(g_LP_L + g_RP_R)tW_{\mu}^{-} + H.C,$$

Reweighting method to fit this distribution with 2 free parameters:

$$\begin{array}{lll} &=& 0.659 \pm 0.015({\rm stat.}) \pm 0.023({\rm syst.}), \\ &=& 0.350 \pm 0.010({\rm stat.}) \pm 0.024({\rm syst.}), \end{array}$$

Theoretical uncertainties dominate and the MET shape

W helicity: LHC combination

W helicity: LHC combination

Jorgen D'Hondt - Vrije Universiteit Brussel

t-channel

Top polarization in Single Top events

ADDENDUM

In this analysis, the top-quark spin asymmetry

$$A_l \equiv \frac{1}{2} \cdot P_t \cdot \alpha_l = \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)}$$
(1)

is used to probe the top-quark coupling structure, where: P_t represents the top-quark polarization; $N(\uparrow)$ and $N(\downarrow)$ respectively denote the number of charged leptons aligned or counteraligned with the direction of the spectator quark that recoils against the single top quark in the top-quark rest frame, which is a good approximation of the top-quark spin axis [2, 3]; and α_X denotes the spin-analyzing power of a decay product X, i.e. the degree of correlation of its angular distributions with respect to the spin of the top quark. The latter is exactly 1 in the SM when X is a charged lepton but its value is in general modified by anomalous top-quark couplings that can arise through an effective extension of the coupling structure at the Wtbvertex [4].

Di-lepton $t\bar{t} \rightarrow l^+ \nu l^- \bar{\nu} b\bar{b},$ $(\Delta \phi_{l^+l^-} = |\phi_{l^+} - \phi_{l^-}|)$

Spin correlations

Correlation coefficient in the helicity basis: 0.24 ± 0.02 (stat.) ± 0.08 (syst.)

$$A_{hel}^{SM} = 0.31$$

Di-lepton $t\bar{t} \rightarrow l^+ \nu l^- \bar{\nu} b\bar{b}$, Ratio of top decays to Wb and Wq

Jorgen D'Hondt - Vrije Universiteit Brussel

Di-lepton $t\bar{t} \rightarrow l^+ \nu l^- \bar{\nu} b\bar{b}$, Ratio of top decays to Wb and Wq

Lepton+jets

Presentation M. Mohammadi Najafabadi on "Asymmetries"

Kinematics of top quark events

Jorgen D'Hondt - Vrije Universiteit Brussel

Kinematics of top quark events

Jorgen D'Hondt - Vrije Universiteit Brussel

Lepton+jets

Kinematics of top quark events

$$S_{\rm T} = H_{\rm T} + E_{\rm T}^{\rm miss} + p_{\rm T}^{\rm leptor}$$

Lepton+jets

Kinematics of top quark events

Jorgen D'Hondt - Vrije Universiteit Brussel

 $p_{\rm T}^{\rm W}$ [GeV]

 $p_{\mathrm{T}}^{\mathrm{W}}$ [GeV]

Lepton+jets

Kinematics of top quark events

arXiv:1209.1062v2

Fourth generation top quarks?

CMS PAS B2G-12-015

bW, tZ, and tĤ

Inclusive vector-like T quarks ? Charge 2/3

Inclusive vector-like T quarks ?

arXiv:1307.7135v2

Inclusive vector-like T quarks: prospects ?

All channels combined

Discovery reach up to 1.2 TeV

CMS PAS B2G-12-012

CMS PAS B2G-12-014

 $t^*\overline{t^*} \rightarrow (\ell\nu bg)(q\overline{q}bg)$

Resonances decaying into top+jets ?

$$m(\ell\nu) = m(q\overline{q}) = M_W$$

$$m(\ell\nu b) = m(q\overline{q}b) = M_t$$

$$m(\ell\nu bg) = m(q\overline{q}bg) = M_{t+g}$$

Existed top quark which receives a non-zero mass before applying the Brout-Englert-Higgs mechanism

CMS PAS B2G-12-006 Lepton+jets

Jorgen D'Hondt - Vrije Universiteit Brussel

46

CMS PAS B2G-12-005 All jets

Jorgen D'Hondt - Vrije Universiteit Brussel

Anomalous top quark production ?

CMS PAS B2G-12-023 $t \rightarrow \bar{b}\bar{c}\mu^+ (\bar{t} \rightarrow \bar{b}c\mu^-)$ $t \rightarrow \bar{b}\bar{u}e^+ (\bar{t} \rightarrow bue^-)$ Baryon Number Violation in top decays ?

Data driven background

	95% CL Upp. lim.	Exp. lim.	68% exp. lim. range
Muon ch.	0.0016	0.0029	[0.0017, 0.0042]
Electron ch.	0.0017	0.0031	[0.0018, 0.0045]
Combined	0.0015	0.0029	[0.0016, 0.0042]

CMS PAS B2G-12-019

Lepton+jets

Vector-like b' quarks ? Charge -1/3

Pair production, single production not yet included

b' decays to tW, bH, and bZ

CMS PAS B2G-12-019

Lepton+jets

Vector-like b' quarks ? Charge -1/3

Pair production, single production not yet included

Events / 20.0

g

00000000

Flavour Changing Neutral Currents ? $t\bar{t} \rightarrow Wb + Zq$

(Ŭ)

to event Q² modeling)

en D'Hondt - Vrije Universiteit Brussel

 $\overline{c}, \overline{u}$

 Z^0

CMS PAS FTR-13-016

$$t\bar{t} \rightarrow Zq + Wb \rightarrow \ell\ell q + \ell'\nu b \ (\ell = e, \mu)$$

Flavour Changing Neutral Currents @ 3000/fb ?

5σ observation from 0.02%

Events

Jorgen D'Hondt - Vrije Universiteit Brussel

Putting things together (i.e. conclusion)

- Top quark pair cross section (+ vector bosons & extra jets, systematics!)
- Differential cross sections (incl. unfolding)
- Single Top cross section (incl. tW channel & top versus anti-top, systematics!)
- Top charge (+2/3) and mass (precision < 1 GeV, systematics!)
- Top versus anti-top mass (precision ~ 200 MeV)
- W helicity in top decays (precision < 10%, systematics!)
- Top polarization (precision ~ 40%, systematics!)
- Spin correlations (observed, systematics!)
- Top to Wb and Wq decays (precision ~ 3-4%, systematics!)
- Charge asymmetry (precision < 1%)
- Kinematics of top quark events are well predicted
- Fourth generation top quarks > ~700 GeV
- Vector-like T quarks (decay into tZ, tH, bW) > ~ 700 GeV
- Top partners with charge 5/3 > ~ 800 GeV
- Resonances (spin-3/2 RS model) decaying into top+jets > ~ 750 GeV
- Ttbar resonances > ~ 1.5-2 TeV
- Baryon number violating top decays < 0.15%
- Flavour Changing Neutral Currents ($t \rightarrow Zq$) < 0.07% (systematics!)

Putting things together (i.e. conclusion)

- Top quark pair cross section (+ vector bosons & extra jets, systematics!)
- Differential cross sections (incl. unfolding)
- Single Top cross section (incl. tW channel & top versus anti-top, systematics!)
- Top charge (+2/3) and mass (precision < 1 GeV, systematics!)
- Top versus anti-top mass (precision ~ 200 MeV)
- W helicity in top decays (precision < 10%, systematics!)
- Top polarization (precision ~ 40%, systematics!)
- Spin correlations (observed, systematics!)
- Top to Wb and Wq decays (precision ~ 3-4%, systematics!)
- Charge asymmetry (precision < 1%)
- Kinematics of top quark events are well predicted
- Fourth generation top quarks > ~700 GeV
- Vector-like T quarks (decay into tZ, tH, bW) > ~ 700 GeV
- Top partners with charge 5/3 > ~ 800 GeV
- Resonances (spin-3/2 RS model) decaying into top+jets > ~ 750 GeV
- Ttbar resonances > ~ 1.5-2 TeV
- Baryon number violating top decays < 0.15%
- Flavour Changing Neutral Currents (t→Zq) < 0.07% (systematics!)