Energy Recovery & Future Colliders

Develop ep/eA colliders with a reduced energy footprint

Our curiosity drives us to the extremes

observable universe 8.8 10²⁶m

quarks < 10⁻¹⁹ m

observable universe 8.8 10²⁶m

visible with our own eyes

quarks < 10⁻¹⁹m

observable universe 8.8 10²⁶m

visible with our own eyes

quarks < 10⁻¹⁹m

~ 1'000'000'000'000'000'000'000'000 meter

~ 0.000'000'000'000'000'01 meter

~ 1'000'000'000'000'000'000'000'000 meter

~ 0.000'000'000'000'000'01 meter

~ 1'000'000'000'000'000'000'000'000 meter

~ 0.000 000 000 000 000 000 01 meter

A century of scientific revolutions

~ 1'000'000'000'000'000'000'000'000 meter

~ 0.000 000 000 000 000 000 01 meter

Discovery of quarks (1968, ep@MIT-SLAC experiment)

DIS is alive!

381 registrations for DIS2022

The quest for understanding physics

"Problems and Mysteries"

e.g. Abundance of dark matter?

Abundance of matter over antimatter?

What is the origin and engine for high-energy cosmic particles?

Dark energy for an accelerated expansion of the universe?

What caused (and stopped) inflation in the early universe?

Scale of things (why do the numbers miraculously match)?

Pattern of particle masses and mixings?

Dynamics of Electro-Weak symmetry breaking?

How do quarks and gluons give rise to properties of nuclei?

Resolution of the structure and dynamics inside hadrons? ...

The quest for understanding physics

"Problems and Mysteries"

e.g. Abundance of dark matter?

Abundance of matter over antimatter?

What is the origin and engine for high-energy cosmic particles?

Dark energy for an accelerated expansion of the universe?

What caused (and stopped) inflation in the early universe?

Scale of things (why do the numbers miraculously match)?

Pattern of particle masses and mixings?

Dynamics of Electro-Weak symmetry breaking?

How do quarks and gluons give rise to properties of nuclei?

Resolution of the structure and dynamics inside hadrons? ...

Observations of new physics phenomena and/or deviations from the Standard Models are expected to unlock concrete ways to address these puzzling unknowns

higher energetic phenomena in the universe

higher energetic phenomena in the universe

High Energy Physics requires powerful accelerators

Basic structures of a particle accelerator

Basic structures of a particle accelerator

Basic structures of a particle accelerator

Typical power consumption for an electron-positron Higgs Factory the highest priority next collider for particle physics

Typical power consumption for an electron-positron Higgs Factory the highest priority next collider for particle physics

Picture adopted from M. Seidel (IPAC 2022)

improve amplifier efficiency

e.g. solid state amplifiers 2x more efficient

operate cavities at higher T & improve Q₀ of cavities

e.g. Nb_3Sn from 2K to 4.4K \rightarrow 3x less cooling power needed

improve amplifier efficiency

e.g. solid state amplifiers 2x more efficient

Accelerating particles will always require a large amount of energy, hence an optimal use of this energy is an unavoidable challenge for our field

R&D for Sustainable Accelerating Structures less energy, less cooling, less power loss, recover beam power

cryogenics

performance $\sim (300K - T) / T$ beam

dissipated heat $\sim 1/Q_0$

operate cavities at higher T & improve Q_0 of cavities

e.g. Nb_3Sn from 2K to 4.4K \rightarrow 3x less cooling power needed

the energy the beam

ERL reaching 00% recovery

> eam power dumped adiated

focus here on the energy recovery part

Linear colliders

Circular colliders

Acc

Linear colliders

dump >99.9999% of the beam power

Circular colliders

radiate away very quickly the beam power

Linear colliders Circular colliders radiation ACC radiate away very quickly dump >99.9999% of *FCC-ee@250* ≃ 300 MW the beam power the beam power about half of this is dumped or radiated

Linear colliders

Circular colliders

dump >99.9999% of the beam power

FCC-ee@250 ≈ 300 MW

~2% of annual electricity consumption in Belgium

radiate away very quickly the beam power

about half of this is dumped or radiated

OBJECTIVE: develop an accelerator technology that recovers energy with an impact of saving $\sim 1\%$ of Belgium's electricity

Energy Recovery technology

towards high-energy collisions with a reduced energy footprint and cost

- Based on 50 years of successful accelerator R&D developments success builts easier on previous success
- Minimal energy consumption to accelerator particles to high energies addressing scientific & societal challenges together with quasi 100% energy recovery
- Maximal knowledge transfer to revolutionise applications in industry
 e.g. nanometer-scale semiconductors, medical isotopes, gamma sources for nuclear industry,
 X-ray Free-Electron Lasers (XFEL), ... incl. career transfer opportunities to industry

Energy Recovery – 50 years of innovation

from previous to current and future facilities as stepping stones for R&D

Energy Recovery

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

Energy Recovery – 50 years of innovation

from previous to current and future facilities as stepping stones for R&D

Energy Recovery

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

bERLinPro & **PERLE**

essential technology stepping stones for future HEP implementations of Energy Recovery accelerators

towards high energy & high power

The Development of Energy-Recovery Linacs arXiv:2207.02095, 237 pages, 5 July 2022

Energy Recovery – 50 years of innovation

from previous to current and future facilities as stepping stones for R&D

Energy Recovery

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

bERLinPro & PERLE

essential technology stepping stones for future HEP implementations of Energy Recovery accelerators

towards high energy & high power

The Development of Energy-Recovery Linacs <u>arXiv:2207.02095</u>, 237 pages, 5 July 2022

complementary in addressing the R&D objectives for Energy Recovery

complementary in addressing the R&D objectives for Energy Recovery

bERLinPro @ Helmholtz Zentrum Berlin *addressing HEP related challenges*

bERLinPro ready for operation at 10 mA contingent on additional budgets upgrades to 100 mA and 50 MeV can be planned to be operational by 2028

complementary in addressing the R&D objectives for Energy Recovery

3-turn ERI

international collaboration bringing all aspects together to demonstrate readiness of Energy Recovery for HEP collider applications

.	•	
Target Parameter	Unit	Value
Injection energy	MeV	7
Electron beam energy	MeV	500
Normalised Emittance	mm	6
$\gamma \epsilon_{x,y}$	mrad	O
Average beam current	mA	20
Bunch charge	рC	500
Bunch length	mm	3
Bunch spacing	ns	25
RF frequency	MHz	801.58
Duty factor		CW

complementary in addressing the R&D objectives for Energy Recovery

international collaboration with several in-kind contributions

second LINAC design & built integrate FRT & towards 4.4K beams up to 500 MeV start with only one LINAC beams up to 250 MeV

cryomodule from SPL @ <u>CERN</u>
relevant in FCC-ee feasibility study
FCC-ee cavities tested at PERLE

Booster from JLab/AES

ALICE electron gun from <u>Daresbury</u>

DC gun @ PERLE versus SRF gun @ bERLinPro

beam dump

complementary in addressing the R&D objectives for Energy Recovery

From Grid to Beam

From Grid to Beam

recover the energy from the beam e.g. ERL reaching 100% recovery beam power

dumped or radiated

 $\sim (300K - T) / T$

operate cavities at higher T & improve Q₀ of cavities

e.g. Nb_3Sn from 2K to 4.4K \rightarrow 3x less cooling power needed

From Grid to Beam

Ongoing & Upcoming facilities with ERL systems

worldwide several other facilities are operational or are emerging

s-DALINAC TU Darmstadt, Germany two pass operation in progress

ongoing

CEBAF 5-pass

highest energy & highest number of passes

0.5.GeV Linac
(20 Cryomodules)

S6-MeV Injector
(2 1/4 Cryomodules)

Extraction
Elements

Elements

More facilities in design

- DIANA (STFC, UK)
- DICE (Darmstadt, Germany)
- BriXSino (Milano, Italy)

in progress

for fundamental science at the energy and intensity frontier

for fundamental science at the energy and intensity frontier

EW⊕Higgs⊕top Factories (e⁺e⁻ colliders)

the highest priority next collider in the ESPP-update@2020

for fundamental science at the energy and intensity frontier

Linear colliders

CLIC and ILC ERL-based versions: ERLC and ReLiC

Circular colliders

CEPC and FCC-ee
ERL-based version: CERC

 $\mathcal{O}(\sim 10 \text{ BCHF})$ (10-15y of operation)

for fundamental science at the energy and intensity frontier

for fundamental science at the energy and intensity frontier

for fundamental science at the energy and intensity frontier

This plot suggests that with an ERL version of a Higgs Factory one might reach

x10 more H's

or

x10 less electricity costs

Integrate Luminosity per Energy [ab⁻¹ TWh⁻¹]

Energy Recovery applications for HED

Refs for CERC: PLB 804 (2020) 135394 and arXiv:2203.07358

Integrate Luminosity per Energy [ab⁻¹ TWh⁻¹]

Energy Recovery applications for HED

for fundamental scien

Can we dream to have an ERL-based Higgs Factory in the LHC tunnel?

Power of Synchrotron Radiation $\sim 1/R$

R: radius of circular collider

Synchrotron Radiation in 27km versus 100km e⁺e⁻ collider ~ x4

FCC-ee versus LHC ERL-based Higgs Factory the same electricity cost for the same number of Higgses?

R&D support for ERL is required to further explore

This

an

Fac

x10

Energy Recovery applications for HEP

for fundamental science at the energy and intensity frontier

Scattering experiments (ep/eA/µA colliders)

With ERL from lower to higher energy scattering experiments

A global ep/eA/ μ A program bridging nuclear & particle physics for a profound understanding of the structure of matter

2020'ies

Lower-energy scattering MESA, COMPASS++/AMBER, NA61, ...

2030-2040'ies

Driven by unique science

nuclear structure ElectroWeak & Higgs new physics searches theory & experiment

> 2050

Driven by remarkable technology

energy recovery & RF structures precision detectors leverage on other colliders

With ERL from lower to higher energy scattering experiments

A global ep/eA/ μ A program bridging nuclear & particle physics for a profound understanding of the structure of matter

2020'ies

Lower-energy scattering MESA, COMPASS++/AMBER, NA61, ...

Driven by remarkable technology

energy recovery & RF structures precision detectors leverage on other colliders

Driven by unique science

nuclear structure ElectroWeak & Higgs new physics searches theory & experiment

2030-2040'ies

 $\mathcal{O}(\sim 1.4 \text{ BCHF})$ (10-15y of operation)

> 2050

Some physics highlights of the LHeC (ep/eA@LHC)

on several fronts comparable improvements between LHC \rightarrow HL-LHC as for HL-LHC \rightarrow LHeC

EW physics

- \circ Δm_W down to 2 MeV (today at ~10 MeV)
- $\triangle \sin^2\theta_W^{eff}$ to 0.00015 (same as LEP)

Top quark physics

- |V_{tb}| precision better than 1% (today ~5%)
- top quark FCNC and γ, W, Z couplings

DIS scattering cross sections

 PDFs extended in (Q²,x) by orders of magnitude

Strong interaction physics

- $\circ \ \alpha_{\rm s}$ precision of **0.1%**
- low-x: a new discovery frontier

Some physics highlights of the LHeC (ep/eA@LHC)

on several fronts comparable improvements between LHC \rightarrow HL-LHC as for HL-LHC \rightarrow LHeC

Measurements of proton Parton Distribution Functions are vital to improve the precision

Measurements of proton Parton Distribution Functions are vital to improve the precision

Essentially all problems of the Standard Model are related to the Higgs sector.

Essentially all problems of the Standard Model are related to the Higgs sector.

Essentially all problems of the Standard Model are related to the Higgs sector.

We need a coherent program allowing for a variety of future colliders

Essentially all problems of the Standard Model are related to the Higgs sector.

We need a coherent program allowing for a variety of future colliders

Make the invisible visible – Detector R&D for DIS

Dedicated detector R&D efforts are to continue

Major challenges:

- Tracking & Vertexing
- o 1° close to the beamline
- High-resolution calorimetry

Make the invisible visible – Detector R&D for DIS

Dedicated detector R&D efforts are to continue

European Detector R&D Roadmap

(2021)

Major challenges:

- Tracking & Vertexing
- o 1° close to the beamline
- High-resolution calorimetry

Synergies with many other major projects, potentially as stepping stones

Potentially one detector for a joint DIS, pp and Heavy-Ion program @ HL-LHC/FCC

) Must happen or main physics goals cannot be met 🛑 Important to meet several physics goals \, 🔴 Desirable to enhance physics reach ಿ R&D needs being met

Make the invisible visible – Detector R&D for DIS

The engine of our curiosity-driven exploration is society's appreciation for the portfolio of technological innovations and knowledge transfer that we continue to realize.

The engine of our curiosity-driven exploration is society's appreciation for the portfolio of technological innovations and knowledge transfer that we continue to realize.

Looking ahead, our key ambition beyond the HL-LHC programme is to develop a Higgs Factory.

The engine of our curiosity-driven exploration is society's appreciation for the portfolio of technological innovations and knowledge transfer that we continue to realize.

Looking ahead, our key ambition beyond the HL-LHC programme is to develop a Higgs Factory.

How it might look

With stepping stones for innovations in technology to boost our physics reach

2020'ies

high-power ERL demonstrated

2020-2030'ies

ERL application electron cooling

high-power ERL

e- beam in collision
(ep/eA @ LHC program)

2040-2050'ies

high-power ERL-based e⁺e⁻ Higgs Factory (Z/W/H/top program)

With stepping stones for innovations in technology to boost our physics reach

However, let's not dwell too much on strategy at this stage...

the European Stategy for Particle Physics is out and will be discussed in due time

meanwhile let us focus on further developments for an attractive high-energy ep/eA programme at CERN and perform R&D to achieve the required technological innovations

demonstrated

high-power ERL e- beam in collision (ep/eA @ LHC program)

Energy Recovery technology & Future Colliders develop high-energy colliders with a reduced energy footprint

- ERL is a mature technology at relatively lower energy and lower intensity
- R&D program revolves around essential stepping stone facilities to reach the high energy and high intensity frontier required in HEP
- A timely realisation of the PERLE and bERLinPro programs is essential for the technology to make sufficient progress towards HEP applications
- Strengthen collaboration across the field to enhance synergies in R&D and to harmonize technical components to reach the HEP related R&D objectives together
- ERL technology may revolutionize our thinking about future high-energy colliders
- On a path towards high-energy ep/eA collisions and potentially an ERL Higgs Factory

Energy Recovery technology & Future Colliders develop high-energy colliders with a reduced energy footprint

- ERL is a mature technology at relatively lower energy and lower intensity
- R&D program revolves around essential stepping stone facilities to reach the high energy and high intensity frontier required in HEP
- A timely realisation of the PERLE and bERLinPro programs is essential for the technology to make sufficient progress towards HEP applications
- Strengthen collaboration across the field to enhance synergies in R&D and to harmonize technical components to reach the HEP related R&D objectives together
- ERL technology may revolutionize our thinking about future high-energy colliders
- On a path towards high-energy ep/eA collisions and potentially an ERL Higgs Factory

A sustainable path towards beautiful science and technology

Energy Recovery technology & Future Colliders develop high-energy colliders with a reduced energy footprint

- ERL is a mature technology at relatively lower energy and lower intensity
- R&D program revolves around essential stepping stone facilities to reach the high energy and high intensity frontier required in HEP
- A timely realisation of the PERLE and bERLinPro programs is essential for the technology to make sufficient progress towards HEP applications
- Strengthen collaboration across the field to enhance synergies in R&D and to harmonize technical components to reach the HEP related R&D objectives together
- ERL technology may revolutionize our thinking about future high-energy colliders
- On a path towards high-energy ep/eA collisions and potentially an ERL Higgs Factory

A sustainable path towards beautiful science and technology

One more thing...

A road ahead

ep/eA program

1st law of Newton

No external forces... keep calm, keep moving

1st law of Newton
 No external forces... keep calm, keep moving

2nd law of Newton
 If there are external forces... built up inertia, keep moving

1st law of Newton
 No external forces... keep calm, keep moving

- 2nd law of Newton
 If there are external forces... built up inertia, keep moving
- 3rd law of Newton
 If there is action... prepare to react, keep moving

The way forward: objectives beyond the impressive CDR

Innovate

Methodologies are evolving... prepare to jump Physics hot topics come (and go)... prepare to surf the good waves

Innovate

Methodologies are evolving... prepare to jump Physics hot topics come (and go)... prepare to surf the good waves

Demonstrate

We are not alone... prepare to show uniqueness People have no time... prepare adequate guidance towards results

Innovate

Methodologies are evolving... prepare to jump Physics hot topics come (and go)... prepare to surf the good waves

Demonstrate

We are not alone... prepare to show uniqueness People have no time... prepare adequate guidance towards results

Promote

Large, larger, largest... prepare to create awareness Trust your intuition... prepare to engage enthousiastic researchers Talented researchers make the difference ... promote science and scientists

beyond the impressive CDR

- Innovate Coordination Panel to steer
 - Methodologies are evolving... prepare to jump Physics hot topics come (and go)... prepare to surf the good waves
- Demonstrate Conveners to steer
 - We are not alone... prepare to show uniqueness
 People have no time... prepare adequate guidance towards results
- Promote all together, and Coordinator to help
 - Large, larger, largest... prepare to create awareness
 Trust your intuition... prepare to engage enthousiastic researchers
 Talented researchers make the difference ... promote science and scientists

beyond the impressive CDR

- O Innovate Coordination Panel to steer

 Blue sky & steered innovations

 Methodologies are evolving... prepare to jump

 Physics hot topics come (and go)... prepare to surf the good waves
- O Demonstrate Conveners to steer

 We are not alone... prepare to show uniqueness

 People have no time... prepare adequate guidance towards results
- O Promote all together, and Coordinator to help

 Large, larger, largest... prepare to create awareness

 Trust your intuition... prepare to engage enthousiastic researchers

 Talented researchers make the difference ... promote science and scientists

beyond the impressive CDR

- O Innovate Coordination Panel to steer

 Blue sky & steered innovations

 Methodologies are evolving... prepare to jump

 Physics hot topics come (and go)... prepare to surf the good waves
- O Demonstrate Conveners to steer

 We are not alone... prepare to show uniqueness

 People have no time... prepare adequate guidance towards results
- O Promote all together, and Coordinator to help

 Large, larger, largest... prepare to create awareness

 Trust your intuition... prepare to engage enthousiastic researchers

 Talented researchers make the difference ... promote science and scientists

beyond the impressive CDR

- Innovate Coordination Panel to steer Blue sky & steered innovations Methodologies are evolving... prepare to jump Physics hot topics come (and go)... prepare to surf the good waves
- Demonstrate Conveners to steer DIS program empowers particle and nuclear physics We are not alone... prepare to show uniqueness People have no time... prepare adequate guidance towards results
- Promote all together, and Coordinator to help Large, larger, largest... prepare to create awareness Trust your intuition... prepare to engage enthousiastic researchers Talented researchers make the difference ... promote science and scientists

Promotion

objectives

& strategy

Time to discuss

all together