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large surface/volume observatories N
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A century of scientific revolutions
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communication World Wide Web

sateltes A century of scientific revolutions ~ touchsereens

GPS
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observations how production of particles and radiation observations how

arge objects nuclear diagnosis and medicine small objects
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“Scientific curiosity which ends up in your pocket”
Rolf Heuer (previous Director General of CERN)



The 50+ years success story of DIS
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The 50+ years success story of DIS

Parton Distribution Functions
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Precise picture how quarks and gluons built up protons
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Why study this for another 50 years?

A
\69‘00 >

lepton (E)

17



| believe a broad DIS program can enable our
search for new physics in various ways
(directly & indirectly)



The quest for understanding physics

“Problems and Mysteries”

—_—
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B . e.g. Abundance of dark matter?
« (TBy i Abundance of matter over antimatter?
T Yy What is the origin and engine for high-energy cosmic particles?
+Re-VE) Dark energy for an accelerated expansion of the universe?
What caused (and stopped) inflation in the early universe?
Scale of things (why do the numbers miraculously match)?
Pattern of particle masses and mixings?
Dynamics of Electro-Weak symmetry breaking?
How do quarks and gluons give rise to properties of nuclei?
Resolution of the structure and dynamics inside hadrons? ...
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The quest for understanding physics

“Problems and Mysteries”

AR e.g. Abundance of dark matter?

Ty Abundance of matter over antimatter?

T Yy What is the origin and engine for high-energy cosmic particles?
Dark energy for an accelerated expansion of the universe?
What caused (and stopped) inflation in the early universe?
Scale of things (why do the numbers miraculously match)?
Pattern of particle masses and mixings?

Dynamics of Electro-Weak symmetry breaking?
How do quarks and gluons give rise to properties of nuclei?
v"-;g,vRa&;-‘?‘gme i Resolution of the structure and dynamics inside hadrons? ...

Observations of new physics phenomena and/or deviations
from the Standard Models are expected to unlock concrete
ways to address these puzzling unknowns
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Zooming into the fundamental interactions

o New physics is hiding somewhere
o Extend the SM in a QFT framework
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Zooming into the fundamental interactions

o New physics is hiding somewhere
o Extend the SM in a QFT framework

o Windows to new physics, e.g.:
= the Higgs sector... ?
= the neutrino sector... ?

o Make H and v interactions visible, e.g.:
= H: today with proton colliders
= v:long-baseline neutrino experiments

Higgs Boson

\_“
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Zooming into the fundamental interactions
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the hard interaction requires precise knowledge on the structure of the proton
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Zooming into the fundamental interactions

o New physics is hiding somewhere
o Extend the SM in a QFT framework

o Windows to new physics, e.g.:
= the Higgs sector... ?
= the neutrino sector... ?

o Make H and v interations visible, e.g.:
= H: today with proton colliders
= v:long-baseline neutrino experiments
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new DIS around the corner



> Vsep =(29-140 GeV)
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Electron-lon Collider (EIC)

Unique in the DIS landscape
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Electron-lon Collider (EIC)

Unique in the DIS landscape
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Electron-lon Collider (EIC) improved gg>H @ LHC

How do the properties
of proton and neutrons
arise from its
constituents?
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our current eyes on the Higgs sector
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TO ’ o .
day’s “Higgs Factory”: from LHC to HL-LHC

Current flagship (27km)

impressive programme up to 2040
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Empowering the (HL-)LHC program with the LHeC

Measurements of proton Parton Distribution Functions are vital to improve the precision
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Empowering the (HL-)LHC program with the LHeC

Measurements of proton Parton Distribution Functions are vital to improve the precision

LHeC (up to 60 GeV e from Energy Recovery Linac) NE o7
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Empowering the (HL-)LHC program with the LHeC

Measurements of proton Parton Distribution Functions are vital to improve the precision

g(x.Q)/g(x Q)ref]
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Empowering the (HL-)LHC program with the LHeC

Measurements of proton Parton Distribution Functions are vital to improve the precision

LHeC (up to 60 GeV e from Energy Recovery Linac)
E..s=0.2—1.3TeV, (Q%x) range far beyond HERA
run with the HL-LHC (= Runb5)

Higgs physics at LHeC itself

With respect to the full HL-LHC expectations,
the LHeC improves up to a factor of 2-3 for
several effective Higgs couplings
e.g. HZZ, HWW, Hyy, Hcc, Hbb, Htt
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More DIS-like opportunities with the SPS and LHC

Unique measurements
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LHC Fixed Target (ALICE, LHCb, LHCSpin, AFTER@LHC)

the most energetic fixed-target experiment ever FGC-he
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o High-x (x>0.5) frontier for gluon and heavy-quark
content in the nucleon and nucleus

(relevant for new physics searches at the LHC
and for ultra-high-energy cosmic rays)
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o Solving the proton radius puzzle
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More DIS-like opportunities with the SPS and LHC

Unique measurements

LHC Fixed Target (ALICE, LHCb, LHCSpin, AFTER@LHC)
the most energetic fixed-target experiment ever

o High-x (x>0.5) frontier for gluon and heavy-quark
content in the nucleon and nucleus

(relevant for new physics searches at the LHC
and for ultra-high-energy cosmic rays)

o Transverse dynamics and spin of gluons and
quarks inside (un)polarised nucleons

COMPASS++/A|V|BER (at SPS) - multipurpose QCD facility
elastic (low-Q?) muon-proton scattering (hydrogen target)

o Solving the proton radius puzzle
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Many essential DIS opportunities around the world at lower energies, e.g. MESA, ...
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our future eyes on the Higgs sector



Future high-energy particle colliders

Essentially all problems of the Standard Model are related to the Higgs sector, hence the argument to built new colliders
dedicated to produce copiously Higgs bosons in order to map precisely its interactions with other particles.
An electron-positron Higgs factory is the highest-priority next collider.

- -3
+ L?b% T
T Yy pa window to

+ R -V(©) P new physics

Q‘*\{O\
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Future high-energy particle colliders

Essentially all problems of the Standard Model are related to the Higgs sector, hence the argument to built new colliders
dedicated to produce copiously Higgs bosons in order to map precisely its interactions with other particles.
An electron-positron Higgs factory is the highest-priority next collider.

Example

1--iF F* expected precision on

. + (})3; o the measurement
of the W-H coupling

LYk window to
new physics

~0.3%

In the search for answers to open questions, we discovered a great
complimentarity among the science reach of different collider types.

~0.1%

the combined precision is much better than that of each individual collider

42



Future high-energy particle colliders

Essentially all problems of the Standard Model are related to the Higgs sector, hence the argument to built new colliders
dedicated to produce copiously Higgs bosons in order to map precisely its interactions with other particles.
An electron-positron Higgs factory is the highest-priority next collider.

Example

1--iF F* expected precision on

‘ + L}ﬁ,& 5 the measurement
of the W-H coupling

T Yy pa window to
new physics

~0.3%

In the search for answers to open questions, we discovered a great
complimentarity among the science reach of different collider types.

the combined precision is much better than that of each individual collider

We need a coherent program allowing for a variety of future colliders
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Future flagship at the energy & precision frontier

Current flagship (27km) Future Circular Collider (FCC)
impressive programme up to 2040 big sister future ambition (100km), beyond 2040
attractive combination of precision & energy frontier
AL

4 2\

FCC- eh/hh@ICJEEE [3. 55%33“3%1

e

(Ya-224 410 auo Ajuo) 4apijjo03 yooa
10 sd| Z dwnssp siaquinu

N 4y @ M (150ab?)

H 1-2y @ 2xMyw (10ab™?)
| 3y @ 240 GeV (5ab?)
sy @2xm(1.5ab7) §

ep—opt'ion with HL-LHC: LHeC
10y @ 1.2 TeV (1ab™)
updated CDR 2007.14491

by around 2026, verify if it is feasible to plan for success
(techn. & adm. & financially & global governance)
potential alternatives pursued @ CERN: CLIC & muon collider a4



Relative uncertainty

Empowering the Higgs sector quest with DIS

Measurements of proton Parton Distribution Functions are vital to improve the precision

. Kinematic range Parton Distribution Functions
~5-7% uncertainty

N> F IR LR I ELLLLLL B UL IR R LR R
on the o(W,Z,H) 207 = ceehe ]
o For
@ 100 TeV | LHeC
. pp 10°: & HERA
od: U L - EVEIC
0.4 B PDF4LHC15 no FCC‘eh 105, [ | BCDMS
s NFCC-eh - L NMC
0.2 104, [ SLAC
0 107
-0.1 g
-0.2 E 102
0.3 f
-0.4 10 &
-0.5 E et i
102 10° 10 1 F
M, [GeV] | e
107
low x N
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Relative uncertainty

Empowering the Higgs sector quest with DIS

Measurements of proton Parton Distribution Functions are vital to improve the precision

~5-7% uncertainty
on the o(W,Z,H)
pp @ 100 TeV

B PDF4LHC15
NFCC-eh

0.5 &
0.4 E
0.3
0.2 E
0.1

0.1
0.2 E
-03
-04
0.5 E

10? 10° 10*
M, [GeV]

~1% uncertainty
on the o(W,Z,H)

Kinematic range Parton Distribution Functions

N> IR LR I ELLLLLL B UL L L
Sio7L
Na ¢ [ FCC-he
6l LHeC
107 [ HERA
r 1 EIC
105 BCDMS
[ ] NMC
04l & SLAC
1030
102}
10 —
1k
0l

low x @i
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our eyes on the neutrino & dark sector
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Major underground Facilities — shielding the visible

Boulby Underground
Laboratory, UK

Laboratoire Souterrain
de Modane, France

-‘g;?' Laboratori Nazionali

el Gran Su?‘mly

Laboratorio Subterraneo

Sandford Underground :

Research Facility, USA she Congromc:Spain Kamioka Observatory,
. Japan

Soudan Underground ’ .Yangyang Underground

Laboratory, USA » ~flaboratory, Korea
2 _

N\,
China JinPing Underground \“ jt’\-‘

Laboratory, China

y ol v . .. - -
! ~ g - ¢
image courtesy of Susana Cebridn, “Science goes underground” 48



Major underground Facilities — Dark Matter (WIMP)

ultimate low background
astroparticle physics

observatories ”?_

I W -

proposal

Boulby Underground
Laboratory, UK

Laboratoire Souterrain

Xenon

feedthrough ™.

array .

XENON (1-10t) to DARWIN (50t)

High-voltage [ . .Connection to cryogenics,
> S purification, data acquisition

* TPC with
central dark
matter target

- Cathode
- Bottom

photosensor
array

(£20z puoAsq) ¥Yad spJemoy |esodoud
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Major underground Facilities — Dark Matter (WIMP)

ultimate low background 0"g
. . 107 -
astroparticle physics Ty
observatories L WCE
¢ 104
§ 10vg
© 0 E
XENON (1-10t) to DARWIN (50t) |£ 7 100k
Xenon = g i 0% =
2.3;:‘;;55: 4 S e e g ¢ 10"5é—
S F
o g 107
8 o 10 i‘
o H E
E 8 10 -
s e |2 wE ‘ Neutrino Floor
Double wall B 10_5 . - ’ o — fE e
cryostat i - S 10—3 10° ot , 10 102
PTFE central dark | M, [Tev/c’]
reflector matter target
kSide/DEAP to A 30(;t reaching the “neutrino floor”
ariode 0 Argo ( ) where the VA backgrounds dominate

neutrino (E) G "'.".9

nuclear recoil
is the signal

proposal




Major underground Facilities —

ultimate low background
astroparticle physics
observatories

XENON (1-10t) to DARWIN (50t)

Xenon
High-voltage Connection to cryogenics,
feedtthrough ..., > purification, data acquisition

photosensor....4 4
aray .

Double wall
e —

PTFE

(£z0Z puoAaq) ¥yao spsemoy |esodoud

* TPC with
central dark

reflector |

proposal

Dark Matter-Nucleon Oy, [cm?]

10° 10°

w0, 10
M, [Tev/c’]

reaching the “neutrino floor”
where the VA backgrounds dominate

10°

neutrino (E)

nuclear recoil
is the signal

Dark Matter (WIMP)

Understand VA interactions much better

-*=Neutrino
""" Antineutrino

—Weighted combination

—This result

0.9

0.8 -

0.7 N arn
S Ll —
& o6 1 H -
&
€05 -
(&)
3 ‘
S 04 g o bl i
< w e
I_u>()3 I
©o0.2 Accelerator

0.1 Data

0.0

15 2.5

\ also at high energies

4.5 5.5 6.5
log,o(E, [GeV])

IceCube’s measurement of the neutrino
charge current cross section through

absorption by Earth (>10TeV)
more to come from DUNE, JUNQO, ...
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Neutrino sector extends the Standard Model Ve

Because neutrinos oscillate, they have mass... but how to extend the Standard Model? \{3

Is a neutrino its own anti-particle? . .
Deep Underground Neutrino Experiment

Is there CP violation in the leptonic
sector?

Sanford < : Fermilab
Underground - B o s "-'-.,\.{_
Re;e_arch 200 miles N R ‘

Facility

What is the absolute mass scale?

How does the neutrino mass
spectrum look like?

Measure the oscillation probabilities
of neutrinos and antineutrinos with
ultimate precision ' e o

e.g. at the Long-Baseline Neutrino Facility (LBNF)
with the DUNE experiment

Probabllity of detecting electron, muon and tau neutrinos
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Neutrino beams in Japan and in the US

CERN’s Neutrino Platform in LBNF & DUNE (US), and in T2K (Japan)

DUNE @ LBNF BabyMIND @ T2K (near detector)

Prototype dual-phase Liquid-Argon TPC Prototype for Magnetised Iron Neutrino Detector

o

—-=

= =————

Within the next decade, we will now much more how to develop
the neutrino sector to extend the Standard Model
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Empowering the neutrino/dark sector quest with DIS

Measurements of VA cross sections are vital to improve the precision

DUNE @ LBNF e

Prototype dual-phase Liquid-Argon TPC

\

- s -

s
°
g
®
8
°
w’
~
8

0.
0.
0.
0.

VuN->uX cross section
not well known

6
4r
2F
1k
.8 [
6F
.4
.2
0

100 150 200 250 300 350

E, (GeV)

Precise low-energy neutrino DIS-like scattering measurements on nuclear targets are required
for DUNE, Super-K/Hyper-K, IceCube, JUNO, ...
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our eyes on new physics
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higher energy interactions

in the lab

. — E, .
po 2 3rvR="&,“rG" Ly F &ﬂ‘) )Lﬁ¢’+“

S0 9L AY - -

higher energetic phenomena

in the universe

e+ D g -/ () '
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higher energy interactions

in the lab
>
6)/‘*
%
@
5
(QJ‘
Innovate Techno\ol;glv
. vicible visibleé
1o make the invisible & S
s&Q}Q/ ({oo &
SN
(N
& L
o (_)’b{k\

higher energetic phenomena
in the universe
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Advancing Accelerator Technologies

High-energy & high-intensity beams are required for a DIS program

PERLE @ lJCLab Orsay

first 10 MW power ERL facifity

TDR soon (2022)

injector 7MeV =
—_—

~~"AE = 80 MeV.

S o®

Energy Recovery Linac

European Accelerator
R&D Roadmap
(2021)

The ERL Roadmap with several stepping stones

106
® Completed s o \1(300[,1)
s | |@ Ongoing (cold) N s .. ..
g : - ~_ FCC-eh . N
10° & ©® Ongoing (warm N *CERC s ERLC 3
. : ®® b
® In progress LHeC S,
PI‘ =S N N Nl
10 F & Sroposed o CEBAF - ol
% N S ‘ (5-pass) s
Ny .
= = SN " NS/
= 3 DRAFT '@ CEBAF h < S5
2 10° & 7/15/2021 (1-pass) PERLE S -
= AN i e . > \10047
é i - \ \1\;[ESA JLab \ ;E\IC.CeC N \LP |
: FEL ~ ¢ S
10? . . . . - . ~ ]
"+ ALICE - o CBETA bERLinPRO (@ Recup. SN2 |
E ® B . @ s R (1-pass) . . (4-pass) \047LI)
S-DALINAC N N N R . ecup.
101 B (1-pass) 7 = CERI: (2?::;;) . (1-pass) E
S R > . A . P
< N N N R S
N N g 2 < Yo, <% ~ b
. ~ O, § f’z‘,, ~ 55 3 ffﬁp S <
10 N L L LN L N N1 N | L L
10~* 103 1072 10! 10° 10! 102 103

Average current in mA

A high-energy muon collider is as well on the mind
(at CERN... towards a pp/uA DIS program) 58


https://arxiv.org/pdf/2201.07895.pdf

Make the invisible visible — Detector R&D for DIS

Dedicated detector R&D efforts are to continue @
1315 All Numbers [cm]

<« 475
Major challenges: Muon Detector
o Tracking & Vertexing o s
o 1°close to the beamline BEAL MO ;
. . . Endcap-Fwd ~-Barrel
o High-resolution calorimetry ——
<«— 160
Solid State Detectors Sorenoid
e.g. Monolithic Active Pixel Sensors EMC-Barrel e
e Tracker Fwd Tracker P — .v i

Bwe

FHC-Plug-Fwd BHC-Plug -Bwd

186 e e 773
23 v 5
FEC-Plug-Fwd BEC.-Plug-Bwd
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Make the invisible visible — Detector R&D for DIS

)

Coy,
e
S

Dedicated detector R&D efforts are to continue o K
o, &8s &8
European Detector FESTEods L g s
FELISTFLETeETEES
. R & D Roa d m a p DRDT <2030 2030-2035 ::::- 2040-2045 >2045
Major Cha“engeS: (2021) Position precision 3134 Q .. . . . . .. ( J .
. ) Low X/X,, 334 @ @ ) @] (X ] [ ]
o Tracking & Vertexing Low power Hu T e es e: o8 :5 .o
Vertex High rates 3134 [ ] [ ] [ I ] o 0 [ BN ]
o 1°close to the beamline deector?  Large area waers” 3134 o0 0 000 !
ﬂ Ultrafast timing® 32 () o : ()
o High-resolution calorimetry c ion womnen T 33 . °
GEJ § Positi:)n p:ecision 3134 : . : ¢ : : : : ( J :
. — Low 3134 [ [ ]
Solid State Detectors 5 > Low o iz 6¢ 6ccses:e
i i i i o e High rates .1,
e.g. Monolithic Active Pixel Sensors = mtogs 2 o o
O 4&; Radiation tolerance NIEL 33 () )
QJ a Radfz?tion tolgrénce TID 33 [ ] o
Synergies with many other Tz e 4
B B Low power 3134 o000 : o0
. . . ) High rates 3134
major projects, potentially as DL e si34 ececeses
trafast timing® .
H 0 G) Radiation tolergance NIEL 33 [ )
Steppl ng Stones .lq-j Radiation tolerance TID 33 .
) o o
Low power 3134
. Time of light? High rates 3134
Large area wafers® 3134
Potentially one detector for a Lo e et i o o o o °

joint DIS and Heavy-lon program @ HL-LHC/FCC FedetonsdomoeTo 33

. Must happen or main physics goals cannot be met @ Important to meet several physics goals Desirable to enhance physics reach @ R&D needs being met



The DIS program as a search engine for new physics

With adequate instrumentation a DIS program can be a prime gateway to discoveries

e’ MR
An high-energy ep collider is ideal to
study features where leptons and 10— tHeg
quarks interact '
e.g. s-channel production of }‘1 i LQ A i
leptoquarks (LQ)
In general, low production rate but
with small background gl s noes Lomanlos s s ol nnpn s
q; Ay 1°°0 500 1000 1500 2000 2500 3000 3500
M, [GeV]

Our community should be able to respond when clear signs of new physics appear
What would be our roadmap if indeed lepton flavour universality is violated? Search for leptoquarks?
e.g. recent LHCb results comparing B-meson decays of muons and electrons, the muon’s anomalous magnetic moment g-2...
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Our communnity is gearing up to
future research programs addressing
the open questions in fundamental physics

Dark Matter
FCC

ee@EW-scale pPp@100TeV

HL-LHC
Long-Baseline Neutrino

today
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Our communnity is gearing up to
future research programs addressing
the open questions in fundamental physics

Dark Matter

HL-LHC
Long-Baseline Neutrino

FCC

ee@EW-scale pp@100TeV

EIC & LHeC
Fixed Target @ SPS/(HL-)LHC
vA @ all energies

FCC
ep@3.5TeV

tod
oaay A coherent and global DIS program

is a major part of this endeavour

(experimental & theoretical)
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Dark Matter

HL-LHC

. . ee@EW-scale @100TeV
Long-Baseline Neutrino e

EIC & LHeC
Fixed Target @ SPS/(HL-)LHC
vA @ all energies

FCC
ep@3.5TeV

. fl‘/‘[/[f(/ :
today Q 0/'
Z
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Dark Matter

HL-LHC
Long-Baseline Neutrino

ee@EW-scale pp@100TeV

empower

EIC & LHeC
Fixed Target @ SPS/(HL-)LHC
vA @ all energies

FCC
ep@3.5TeV

. fl‘/‘[/[f(/ :
today Q 0/'
Z
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Dark Matter

HL-LHC
Long-Baseline Neutrino

ee@EW-scale pp@100TeV

empower complementary

EIC & LHeC
Fixed Target @ SPS/(HL-)LHC
vA @ all energies

FCC
ep@3.5TeV

: . fl‘/‘[/[f(/ :
today %, Q 0/'
o8 /0/¢
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Building the DIS future together

\
%
$ N
5 \ D ! &
) N

Dark Matter

HL-LHC

. . ee@EW-scale 100TeV
Long-Baseline Neutrino & Pp@

complementary
EIC & LHeC

Fixed Target @ SPS/(HL-)LHC
vA @ all energies

ep@3.5TeV

e,

: . f//pq‘[/ :
today £y Q of, W
i

S

Sustain a strong global DIS program is vital for particle physics

L ENERGY PSS % Thank you for your attention!
m RESEARCH CENTRE be 727 e f W o Jorgen.DHondt@vub.be

BRUXELLES BRUSSEL
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Make the invisible visible — Detector R&D for DIS

Dedicated detector R&D efforts are to continue European Detector

R&D Roadmap
DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & (2021)

DETECTOR COMMUNITY THEMES (DCTs)

2030- 2035- 2040-

<2030 o035 2080 2045

>2045

DRDT11 Improve time and spatial resolution for gaseous detectors with
long-term stability

DRDT1.2 Achieve tracking in gaseous detectors with dE/dx and dN/dx capability
in large volumes with very low material budget and different read-out
schemes

DRDT1.3 Develop environmentally friendly gaseous detectors for very large
areas with high-rate capability

DRDT 1.4 Achieve high sensitivity in both low and high-pressure TPCs

DRDT 2.1 Develop readout technology to increase spatial and energy
resolution for liquid detectors

DRDT 2.2 Advance noise reduction in liquid detectors to lower signal energy
thresholds

DRDT2.3 Improve the material properties of target and detector components
in liquid detectors

DRDT2.4 Realise liquid detector technologies scalable for integration in
large systems

HIIIH

DRDT 3.1 Achieve full integration of sensing and microelectronics in monolithic
CMOS pixel sensors
- DRDT3.2 Develop solid state sensors with 4D-capabilities for tracking and
Solid calorimetry
state DRDT3.3 Extend capabilities of solid state sensors to operate at extreme
fluences
DRDT 3.4 Develop full 3D-interconnection technologies for solid state devices .
in particle physics 69
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Make the invisible visible — Detector R&D for DIS

Dedicated detector R&D efforts are to continue

PID and
Photon

DRDT4.1

DRDT 4.2
DRDT4.3

DRDT 4.4

DRDT5.1
DRDT 5.2

DRDT5.3

DRDT 5.4
DRDT 6.1

DRDT 6.2
DRDT 6.3
DRDT 7.1
DRDT 7.2

DRDT 7.3
DRDT 7.4

DRDT 7.5

Enhance the timing resolution and spectral range of photon
detectors

Develop photosensors for extreme environments

Develop RICH and imaging detectors with low mass and high
resolution timing

Develop compact high performance time-of-flight detectors
Promote the development of advanced quantum sensing technologies
Investigate and adapt state-of-the-art developments in quantum
technologies to particle physics

Establish the necessary frameworks and mechanisms to allow
exploration of emerging technologies

Develop and provide advanced enabling capabilities and infrastructure

Develop radiation-hard calorimeters with enhanced electromagnetic
energy and timing resolution

Develop high-granular calorimeters with multi-dimensional readout
for optimised use of particle flow methods

Develop calorimeters for extreme radiation, rate and pile-up
environments

Advance technologies to deal with greatly increased data density
Develop technologies for increased intelligence on the detector
Develop technologies in support of 4D- and 5D-techniques

Develop novel technologies to cope with extreme environments and
required longevity

Evaluate and adapt to emerging electronics and data processing
technologies

European Detector
R&D Roadmap
(2021)

[T
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Make the invisible visible — Detector R&D for DIS

Dedicated detector R&D efforts are to continue European Detector

R&D Roadmap
(2021)

DRDT71 Advance technologies to deal with greatly increased data density
DRDT7.2 Develop technologies for increased intelligence on the detector
DRDT 7.3 Develop technologies in support of 4D- and 5D-techniques

DRDT 7.4 Develop novel technologies to cope with extreme environments and
required longevity

DRDT7.5 Evaluate and adapt to emerging electronics and data processing
technologies

DRDT 8.1 Develop novel magnet systems
DRDT 8.2 Develop improved technologies and systems for cooling
DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high

precision mechanical structures. Develop Machine Detector
Interfaces.

DRDT 8.4 Adapt and advance state-of-the-art systems in monitoring
including environmental, radiation and beam aspects

o DCT1 Establish and maintain a European coordinated programme for training in

Training instrumentation

DCT2 Develop a master's degree programme in instrumentation

| N

o
®®
9 @

“H
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