

Status of Top Quark Physics

Jorgen D'Hondt Vrije Universiteit Brussel on behalf of the ATLAS, CDF, CMS, and D0 Collaborations

"Status of Top Quark Physics"

Top Quarks at hadron colliders

A hot topic at colliders, example from CMS.

<u>Related talks this week:</u> Top Quark Theory – P. Uwer Searches w. t/b – F. Blekman 9 (!) talks in parallel session

"Status of Top Quark Physics"

Top Quarks: a hot topic

"Status of Top Quark Physics"

Top Quarks at hadron colliders

Both <u>strong</u> and <u>electroweak</u> production

"Status of Top Quark Physics"

Top Quarks at hadron colliders

strong pair production

jets, b-jets, charged leptons, neutrino's \rightarrow need the full functionality of the detector

"Status of Top Quark Physics"

Observing t \rightarrow b W at colliders

"Status of Top Quark Physics"

Production at Tevatron and LHC

20 years for almost 6 orders of magnitude \rightarrow the Top Quark era

(caveat: assumed 13 TeV collisions with a cross section of 800 pb)

"Status of Top Quark Physics"

ATLAS CONF-2014-004; CMS BTV-13-001

Using t \rightarrow b W for calibration

Top guark events useful for both the calibration of the Jet Energy Scale as well as the b-tagging performance.

CMS Preliminary (stat+syst)

19.8 fb⁻¹ at √s=8 TeV

TCHP

bSample tt

Combined tt

LTtop tt

μ-jets

FTC tt

V FTM tτ LT-J/ψ

- Di-lepton events in ATLAS, assume $|V_{th}|=1$
- Likelihood fit on binned histograms of the b-• tagging discriminators to extract the b-tagging efficiency (PDF's from simulation)
- Limited by systematic uncertainties •

"Status of Top Quark Physics"

arXiv:1309.7570

BRU

ES BRUSSE

Cross-section – Tevatron

"Status of Top Quark Physics"

Cross-section – pair production

"Status of Top Quark Physics"

BRUXELLES BRUSSE

Cross-section and PDF's

- PDF's from the measured top quark pair cross-sections
- Assume the top quark pole mass to be 173.2 ± 1.4 GeV

.

Default as(m_) of respective PDF set

0.108

ABM11

CT10

HERAPDF1.5

MSTW2008

NNPDF2.3

0.11

"Status of Top Quark Physics"

0.116

0.114

0.112

ĕ 5

0.118

CMS arXiv:1404.3171

Cross-section – Jet Multiplicity

Differential cross-section as a function of the jet multiplicity (testing higher order QCD and an important background for ttH), measurement in visible phase-space.

The fractions with 0, 1, ≥ 2 jets are fitted to data histograms of a χ^2 variable including the observed kinematics of the event (m_w and m_{top})

"Status of Top Quark Physics"

CMS EPJC73(2013)2339; CMS TOP-12-027; CMS TOP-12-028; ATLAS EPJC73(2013)2339; ATLAS CONF-2013-099 Differential cross-sections

Measured distributions are unfolded to correct for experimental effects.

Discrepancies with NLO generators are to be taken into account when estimating systematic uncertainties in measurement/searches.

Important for searches in processes where top quarks appear.

"Status of Top Quark Physics"

ATLAS Phys. Rev. D 89, 072012 (2014); CMS TOP-13-010 Cross-section – Top and Heavy-Flavour

- Top quarks in association with heavy-flavor quarks (b or c) are important background events for several searches, eg. tt+H.
- Selected di-lepton sample with at least 3 b-tagged jets. •

CMS TOP-13-011; ATLAS CONF-2011-153; CDF arXiv:1106.3970 Cross-section – associated production

Mis-identification rate of hadronic activity is obtained from side-bands of photon-ID variables in data, after a simulation based reweighing from side-bands to signal region. The purity of correctly identified photons is measured to be 66.7%.

$$R = \sigma_{\bar{t}t+\gamma} / \sigma_{\bar{t}t}$$

= (1.07 ± 0.07(stat.) ± 0.27(syst.)) · 10⁻²

modeling bck

$$\sigma_{t\bar{t}+\gamma} = R \cdot \sigma_{\bar{t}t}^{\text{CMS}}$$

= 2.4 ± 0.2(stat.) ± 0.6(syst.) pb

DI DE BRUSSEL

 $E_T^{photon} > 20 \text{ GeV}$ $\Delta R(photon, b-quarks) > 0.1$

$$\sigma_{\bar{t}t+\gamma}^{SM} = 1.8 \pm 0.5 \,\mathrm{pb}$$

"Status of Top Quark Physics"

Cross-section – single-top production

Electroweak single-top production

"Status of Top Quark Physics"

arXiv:1402.5126

Cross-section – single-top Tevatron

Observed significance is 6.3 σ

"Status of Top Quark Physics"

CMS TOP-13-009 (8 TeV); ATLAS CONF-2011-118 (7 TeV)

Cross-section – s-channel

- Multivariate analyses are developed, and sensitivity limited by theoretical uncertainties
- **ATLAS** (7 TeV): $\sigma_{s-ch} < 26.5 \text{ pb} (= 5.8 \text{ x} \sigma^{SM})$
- **CMS** (8 TeV): $\sigma_{s-ch} < 11.5 \text{ pb} (= 2.1 \text{ x } \sigma^{SM})$

Assuming signal (σ >0) (Feldman-Cousins 68% CI) $\sigma_{s-\text{ch.}} = 5.9^{+8.6}_{-5.1} \text{ pb}$ muon channel $\sigma_{s-\text{ch.}} = 6.9^{+8.7}_{-5.7} \text{ pb}$ electron channel $\sigma_{s-\text{ch.}} = 6.2^{+8.0}_{-5.1} \text{ pb}$ combined

"Status of Top Quark Physics"

CMS TOP-12-011; ATLAS CONF-2014-007

Cross-section – t-channel

- ATLAS: Multivariate analyses to measure cross-section in detector acceptance and extrapolate to full phase space
- **CMS**: fitting on $|\eta_i|$ distribution
- Systematic uncertainties dominate

"Status of Top Quark Physics"

Lepton Charge Ratio – t-channel

"Status of Top Quark Physics"

ELLES BRUSSE

CMS TOP-12-040; ATLAS CONF-2013-100

Cross-section – Wt-channel

BDT analyses have observed the Wt-channel at 8 TeV

- **CMS** (12.2/fb): $\sigma_{tW} = 23.4 + 5.5_{-5.4} \text{ pb}$
 - (6.1σ obs, 5.4σ exp.)

- (4.2 σ obs, 4.0 σ exp.)

ATLAS (20.3/fb): σ_{tW} = 27.2 ± 2.8(stat) ± 5.4(syst) pb

"Status of Top Quark Physics"

Cross-section – single-top production

"Status of Top Quark Physics"

LES BRUSSE

V_{tb} in single-top production

 $|V_{tb}|^2 = \sigma / \sigma_{th} (|V_{tb}| = 1)$

Measurements at 4-5% precision, and limited by the statistical uncertainty and more data will come.

• ATLAS:

Luca Lista @ Moriond EW 2014

iine "S

"Status of Top Quark Physics"

BRUSSE

FS

Cross-section – 4 Top Quarks ?

 $\sigma_{t\bar{t}t\bar{t}}^{SM} \approx 1 \text{ fb}$

00000000000

8 TeV

A combination of kinematic reconstruction and multivariate techniques is used to distinguish between signal and backgrounds.

CMS TOP-13-014, ATLAS-CONF-2014-008, CDF Note 11071, D0 Note 6416

The Top Quark Mass

First LHC + Tevatron combination (11 measurements, 93% fit probability)

"Status of Top Quark Physics"

CMS TOP-13-014, ATLAS-CONF-2014-008, CDF Note 11071, D0 Note 6416

The Top Quark Mass

- Impact of the different measurements in the BLUE combination
- Comparing decay channels, experiments, colliders

"Status of Top Quark Physics"

ATLAS + CDF + CMS + D0 Preliminary

34.6

-4.2

CDF RunII, I+jets

CDF RunII, di-lepton

 $L_{int} = 8.7 \text{ fb}^{-1}$

 $L_{int} = 5.6 \text{ fb}^{-1}$

The Top Quark Mass – update CMS

"Status of Top Quark Physics"

LES BRUSSE

CMS TOP-14-001 The Top Quark Mass – update CMS

Measuring the		δm_t^{2D} (GeV)	δ JSF	$\delta m_{\rm t}^{\rm 1D}$ (GeV)
key systematic	Experimental uncertainties			
uncertainties	Fit calibration	0.10	0.001	0.06
togothor with the	p_{T} - and η -dependent JES	0.18	0.007	1.17
together with the	Lepton energy scale	0.03	< 0.001	0.03
top quark mass	MET	0.09	0.001	0.01
improves the	Jet energy resolution	0.26	0.004	0.07
nrecision	b tagging	0.02	< 0.001	0.01
	Pileup	0.27	0.005	0.17
	Non-tīt background	0.11	0.001	0.01
	Modeling of hadronization			
	Flavor-dependent JSF	0.41	0.004	0.32
	b fragmentation	0.06	0.001	0.04
	Semi-leptonic B hadron decays	0.16	< 0.001	0.15
	Modeling of the hard scattering process			
	PDF	0.09	0.001	0.05
	Renormalization and	0.12 ± 0.13	$0.004 {\pm} 0.001$	0.25 ± 0.08
	factorization scales	0.12±0.10		
	ME-PS matching threshold	$0.15 {\pm} 0.13$	0.003 ± 0.001	$0.07 {\pm} 0.08$
	ME generator	0.23 ± 0.14	0.003 ± 0.001	0.20 ± 0.08
	Modeling of non-perturbative QCD			
	Underlying event	$0.14{\pm}0.17$	$0.002 {\pm} 0.002$	$0.06 {\pm} 0.10$
	Color reconnection modeling	$0.08 {\pm} 0.15$	0.002 ± 0.001	0.07 ± 0.09
	Total	0.75	0.012	1.29

"Status of Top Quark Physics"

arXiv:1405.1756

The Top Quark Mass – update D0

Applying the Matrix Element technique in the lepton+jet final state on the full Run-II dataset

$$m_t = 174.98 \pm 0.58 \,(\text{stat} + \text{JES}) \pm 0.49 \,(\text{syst}) \,\,\text{GeV}$$

 $m_t = 174.98 \pm 0.76 \text{ GeV},$

Source of uncertainty	Effect on m_t (GeV)		
Signal and background modeling:			
Higher order corrections	+0.15		
Initial/final state radiation	± 0.09		
Hadronization and UE	+0.26		
Color reconnection	+0.10		
Multiple $p\bar{p}$ interactions	-0.06		
Heavy flavor scale factor	± 0.06		
<i>b</i> -jet modeling	+0.09		
PDF uncertainty	± 0.11		
Detector modeling:			
Residual jet energy scale	± 0.21		
Flavor-dependent response to jets	± 0.16		
b tagging	± 0.10		
Trigger	± 0.01		
Lepton momentum scale	± 0.01		
Jet energy resolution	± 0.07		
Jet ID efficiency	-0.01		
Method:			
Modeling of multijet events	+0.04		
Signal fraction	± 0.08		
MC calibration	± 0.07		
Total systematic uncertainty	± 0.49		
Total statistical uncertainty	± 0.58		
Total uncertainty	± 0.76		

"Status of Top Quark Physics"

CMS TOP-12-030

Top Quark Mass - alternatives

example: using the B-hadron lifetime technique (8 TeV)

"Status of Top Quark Physics"

CMS FTR-13-017

Top Quark Mass - future

Non-standard methods

Standard methods

Two or three orders of magnitude in Top Quark sample size, but it will require lots of work to reduce the uncertainty by a factor 3-5.

"Status of Top Quark Physics"

ATLAS Phys. Lett. B 728C (2014); pp.363-379, CMS JHEP 06(2012)109; CMS TOP-12-031

Top Quark Mass – top versus anti-top

Unique testing of CPT invariance on bare quarks

Source CMS TOP-12-031	Estimated effect (MeV)		
Jet energy scale	17 ± 15		
Jet energy resolution	8 ± 11		
b vs. $\overline{\mathbf{b}}$ jet response	64 ± 7		
Signal fraction	45 ± 2		
Background charge asymmetry	12.43 ± 0.03		
Background composition	${f 50}\pm 1$		
Pileup	$f 17.4\pm0.4$		
b-tagging efficiency	20 ± 8		
b vs. \overline{b} tagging efficiency	43 ± 6		
Method calibration	$15\pm {f 54}$		
Parton distribution functions	12 ± 3		
Total	122		

Results (in GeV), still statistics dominated

CMS	7 TeV	-0.44 +- 0.46 (stat) +- 0.27 (syst)
CMS	8 TeV	-0.27 +- 0.20 (stat) +- 0.12 (syst)
ATLAS	7 TeV	0.67 +- 0.61 (stat) +- 0.41 (syst)

"Status of Top Quark Physics"

CMS arXiv:1404.2292

Top Quark Decay

Branching to other quarks $t \rightarrow Wq$ is measured

 $R = BR(t \rightarrow Wb) / BR(t \rightarrow Wq)$

Mis-reconstructions taken into account in a large likelihood fit (eg. jet assignment & flavor tagging matching). B-tagging efficiency from other measurements, and no $|V_{th}|$ assumption made.

"Status of Top Quark Physics"

CMS,

Jorgen D'Hondt (Vrije Universiteit Brussel)

33

CMS TOP-13-008

XELLES BRUSSE

W helicity in Top Quark Decay

Reweighting method to fit the $\cos\theta$ distribution with 2 free parameters Theoretical uncertainties dominate and the MET shape

$$\rho(\cos\theta_l^*) \equiv \frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_l^*} = \frac{3}{8} (1 - \cos\theta_l^*)^2 F_L + \frac{3}{8} (1 + \cos\theta_l^*)^2 F_R + \frac{3}{4} \sin^2\theta_l^* F_0 \,,$$

$$F_0 = 0.659 \pm 0.015(\text{stat.}) \pm 0.023(\text{syst.}),$$

$$F_L = 0.350 \pm 0.010(\text{stat.}) \pm 0.024(\text{syst.}),$$

"Status of Top Quark Physics"

ATLAS CONF-2013-033; CMS TOP-12-025 Whelicity in Top Quark Decay

"Status of Top Quark Physics"

CMS TOP-12-020

W helicity in Top Quark Decay

$$\mathcal{L}_{tWb}^{anom.} = -\frac{g}{\sqrt{2}}b\gamma^{\mu}(V_LP_L + V_RP_R)tW_{\mu}^{-} - \frac{g}{\sqrt{2}}b\frac{i\sigma^{\mu\nu}q_{\nu}}{m_W}(g_LP_L + g_RP_R)tW_{\mu}^{-} + H.C,$$

"Status of Top Quark Physics"

ATLAS Phys. Rev. Lett. 111, 232002 (2013)

Top Quark polarization

quark pair events implies zero longi polarization of the to quarks.	tudinal P _{SM} =	α (NLO) -0.39 0.998 0.93 -0.31 = 0.003 ± 0.001 [PLB 725 (2013) 115]
$\frac{1}{\sigma} \frac{d^2 \sigma}{d[\cos(\theta_i)] d[\cos(\theta_j)]} = \frac{1}{4} [\boldsymbol{P} \alpha_i \operatorname{cos}(\theta_j)]$	$os(heta_i) + \mathbf{P} \alpha_j cos(heta_j)$	$) + A \alpha_i \alpha_j \cos(\theta_i) \cos(\theta_j)]$
$ \begin{array}{l} P = 2A_P \\ A_P = \frac{N(\cos\theta_\ell) > 0 - N(\cos\theta_\ell) < 0}{N(\cos\theta_\ell) > 0 + N(\cos\theta_\ell) < 0} \end{array} $	$0.005\pm0.013~(\mathrm{stat.})\pm0$.020 (syst.) \pm 0.008($p_{\rm T}^{t}$ reweig.)
$e + jets$ $\mu + jets$ $\ell + jets$ $\chi = 7 \text{ TeV}$ $\ell + jet$	ts ts $\int \mathcal{L} dt = 4.7 \text{ fb}^{-1}$ $\sqrt{s} = 7 \text{ TeV}$ Uncertainties $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 7 \text{ TeV}$	ATLAS $\int \mathcal{L} dt = 4.7 \text{ fb}^{-1}$ dilepton $\sqrt{s} = 7 \text{ TeV}$ $z \rightarrow v\tau$ $z \rightarrow v\tau$

CP conservation/violation in top decays if top and anti-top have same/opposite Parity

"Status of Top Quark Physics"

CMS TOP-13-001 **Top Quark Decay – polarization** Also polarization measurement using Single-Top $\frac{d\Gamma}{d\cos\theta_X} = \frac{\Gamma}{2}(1 + P_t \alpha_X \cos\theta_X) \equiv \Gamma(\frac{1}{2} + A_X \cos\theta_X)$ (angle between the charged lepton and the untagged jet) $P_t = 0.82 \pm 0.12(stat.) \pm 0.32(syst.) = 0.82 \pm 0.34(tot.)$ $A_l \equiv \frac{1}{2} \cdot P_t \cdot \alpha_l = \frac{N(\uparrow)}{N(\uparrow)}$ (with $\alpha_l = 1$) Should be 100% polarized due to V-A coupling a.u. CMS preliminary $\sqrt{s} = 8 \text{ TeV}, L = 20 \text{ fb}^{-1}$ signal (t-channel) CMS preliminary √s = 8 TeV, L = 20 fb⁻¹ s-channel Muon channel, 2J1T BDT > 0.06 $A = 0.42 \pm 0.07$ (stat.) ± 0.15 (syst.) 600 200 · unfolded data diboson generated (POWHEG) QCD stat. + syst. generated (CompHEP) 400 unfoldin 200 100 0 0.5 -0.5

 $\cos \theta^*$

0.8

0.6

0.2

0.4

"Status of Top Quark Physics"

Jorgen D'Hondt (Vrije Universiteit Brussel)

-1

-0.5

 $\cos \theta^{\star}$

muon channel

0

0.5

ATLAS Phys. Rev. Lett. 108, 212001 (2012); ATLAS CONF-2013-101; CMS Phys Rev Lett 112 (2014) 182001

Top Quark spin correlations

"Status of Top Quark Physics"

BRUSSE

FS

CMS FTR-13-016; CMS Phys. Rev. Lett. 112 (2014) 171802; ATLAS JHEP 1209 (2012) 139; ATLAS Phys. Lett. B 712 (2012) 351-369; CMS TOP-14-003 TOP Quark Rare Decays – FCNC

BDT analysis combining for example kinematic variables of the photon, lepton and jets in the single-top event

"Status of Top Quark Physics"

CMS FTR-13-016; CMS Phys. Rev. Lett. 112 (2014) 171802; ATLAS JHEP 1209 (2012) 139; ATLAS Phys. Lett. B 712 (2012) 351-369; CMS TOP-14-003

Top Quark Rare Decays – FCNC

The limit for FCNC is reduced by orders of magnitude, and this will continue

CMS SUS-13-002; ATLAS arXiv:1403.6293

Top Quark Rare Decays – FCNC

CMS (8 TeV) re-interpretation of SUSY multi-lepton analyses Limits at 95% CL BR(t→cH) < 1.28%

Higgs Decay Mode		obs	exp	1σ range
$h \rightarrow WW^*$	(BR = 23.1 %)	1.58 %	1.57 %	(1.02–2.22)%
h ightarrow au au	(BR = 6.15%)	7.01 %	4.99 %	(3.53–7.74)%
$h \rightarrow ZZ^*$	(BR = 2.89 %)	5.31%	4.11 %	(2.85–6.45)%
combined		1.28 %	1.17 %	(0.85–1.73)%

top-charm flavor violating Higgs Yukawa couplings of $\sqrt{|\lambda_{tc}^{h}|^{2} + |\lambda_{ct}^{h}|^{2}} < 0.21$

ATLAS (7-8 TeV) using $H \rightarrow \gamma \gamma$ Limits at 95% CL BR(t \rightarrow qH) < 0.79% $\sqrt{|\lambda_{tc}^{h}|^{2} + |\lambda_{ct}^{h}|^{2}} < 0.17$

Expectation in SM: BR(t \rightarrow cH) \approx 3 . 10⁻¹⁵ arXiv:hep-ph/0409342

ATLAS JHEP11(2013)031; CMS TOP-11-031

Top Quark Charge

D0 arXiv:1405.0421; CDF Note 11035

Top Quark Event Variables – Asymmetries

- New A_{FB} measurement from D0
- Agrees with SM expectations
- CDF result with $\sim 2\sigma$ deviation is shown

"Status of Top Quark Physics"

Top Quark Event Variables – Charge Asymmetry

$$\begin{split} A_{\rm C} &= \frac{N(\Delta|y|>0) - N(\Delta|y|<0)}{N(\Delta|y|>0) + N(\Delta|y|<0)} \\ \Delta|y| &\equiv |y_t| - |y_{\overline{t}}| \\ & \text{After unfolding of} \\ & \text{acceptance and detector} \\ & \text{effects, hence a parton-level A}_{\rm C} \text{ measurement} \end{split}$$

		ATLAS	CMS	Comb.	Corr.
	A_C	0.006	0.004	0.005	0.058
	Statistical	0.010	0.010	0.007	0
	Detector response model	0.004	0.007	0.004	0
	Signal model	< 0.001	0.002	0.001	1
ties	W+jets model	0.002	0.004	0.003	0.5
aint	QCD model	< 0.001	0.001	0.000	0
ert	Pileup+MET	0.002	< 0.001	0.001	0
Unc	PDF	0.001	0.002	0.001	1
	MC statistics	0.002	0.002	0.001	0
	Model dependence				
	Specific physics models	< 0.001	*	0.000	0
	General simplified models	*	0.007	0.002	0
	Systematic uncertainty	0.005	0.011	0.006	
	Total uncertainty	0.011	0.015	0.009	

Top Quark Event Variables – Charge Asymmetry

First measurement in the di-lepton channel of the lepton charge asymmetry

"Status of Top Quark Physics"

Top Quark Event Variables – Charge Asymmetry

"Status of Top Quark Physics"

Top Quark Event Variables – Asymmetries

"Status of Top Quark Physics"

Top Quark Physics – the future

TOPLHCWG success

