T detection and v oscillation

Gaston WILQUET

FOR HIGH ENERGIE!
(ULE - VUK )

Symposium in honorem
Prof. Jean SACTON

Brussels, 7 - 8 September 2000



Contents

The neutrino 1dentity (brief)

Limits on neutrino masses

Neutrino oscillation phenomenology (brief)
Status of search for neutrino oscillation

OPERA : search for v <v,_ oscillation in LBL
accelerator experiment (refer to K.Niwa’s talk)

The neutrino mass and the mass budget of the
Universe (if time allows)



The Standard Model neutrino

¢ The electron-neutrino v, is the
massless,
chargeless,
colourless,
spin 1/2,
partner of the electron in the left handed SU(2) x U(1) lepton doublet

e Neutrinos also exist in 3 families like the other fermions
(measured at LEP from the width of the Z’; why? why 3?)

B

e The lepton numbers L,, L , , L are conserved independently

BR.(u —>ey)<5x10™"



e Only v, and v, have CC and NC weak interactions

(P conservation is fully violated)

e If they exist, v, and v, are sterile

Massless v and v are distinct by their observable helicity
= invariant chirality

Massless neutrinos may not be overtaken and their spin cannot be flipped




What if neutrinos have (even tiny) mass
Dirac or Majorana neutrinos?

e v, emitted in #~ decay has v <c
may be overtaken and undergo spin flip —»> v_

e Is it different from the v_ emitted in 8° decay? They only differ by L
If yes: Dirac neutrinos, like other fermions, distinguished by L = £1 eigenvalues
If no : Majorana neutrinos, v =v

apparent distinction is artefact of - their V-A interactions

- the difficulty to "flip spin"



Limits on the neutrino masses:
1/ Direct measurements from decay Kinematics

o im, <22-23eV | @95%cC.L

from end of E _ spectrumin *H — *He + ¢ + 7,

(Troitsk and Mainz experiments, 2000)

o |m,, <170 keV|@90% c.L

. + +
from Eﬂ+ inz —>uv,

(Assagam et al, PSI, 1996)

o im, <18.2 MeV | @9% c.L

from phase space in z° — 3(5)z"v_(V. )
(LEP -ALEPH 2000)




Limits on the neutrino masses:
2/ Big Bang cosmology

¢« AtT~2x10"K~2MeV >m, (t=(I/kT) ~0.255s)
yand v/v decouple : v+v ¢« y+y

e Taking account of
- the thermodynamics of fermions/bosons

- the adiabatic expension of the univers

-y and e’ /e decouple: e +e S y+yatT~m, =0.5eV

0 3 0

my =—n) (=412 em™ ) =113 cm™ at present epoch

14

T’ =(%)%T;’(= 273 K)=19K~2x10%eV



e Yet undetected primeval neutrinos are non-relativistic if m >10"eV

0

) 3H,
mV XnV = pV < pc = 87Z'G
N

with H, =65+7 km s~ kpc™

J

> m, <60eV

~ 4.5 keV cm™




Limits on the neutrino masses:
3/ Supernovae SN1987A

e February 23, 1987, 7h33 UT, 23 neutrino interactions in 3 underground experiments
(Kamiokande, Japan; IMB, Ohio; Baksan, Caucase) in 12.3 s time gate

e SN1987A: death of Sanduleak in LMC at 150 000 Iy
SN-II models: 99% of ~2. 10%° J released — ~10°% v with <E >=10 MeV

after 150 000 y : 10s flash of ~4. 10*° v cross the Earth

¢ From measured and model energy spectrum
model emission time dispersion
measured arrival time dispersion

Confirmation of the SN-II models
m, <~25eV

e Identical fluxes of all v and v species expected

Events expected to be v, (much larger v, + n — e + p cross-section)



Limit on the neutrino masses:
4/ 0vPBP decay experiments

e The nuclear 0vBf3 decay experiment is THE v spin-flip experiment
(A, Z) > (A, Z+2)+2e AL =2

Process possible if the

e emitted right-handed v, together with e~
€ Y, Vo absorbed as left-handed v, to produce e

= -
WL Massive Majorana neutrino :
d U Wi v, =v, and spin flipped
d :
g T, ( LGe > 1 Se+2¢")>10%y @90% C.L.

d y
!

m, <0.46 el

|- el




Massive neutrinos:
Mixing & Neutrino oscillations

B.Pontecorvo
1957

B.Pontecorvo, V.N. Grimov
1967

Vv, l=e,u,7 family eigenstates

v, k=13  mass eigenstates

3 I
(v, ) (Vl\ Vi = ZUlk Vi
v |=U v, .

\V: \V3 /

‘ Uak

‘2

b5
I Mu
-

4 (6) parameters { 3 ‘U lk‘

Dirac (Majorana) | 1 (3)phases

> l=e,u,t

Straightforward extension to more than 3 neutrinos families, e.g. sterile neutrinos

Oscillation cannot distinguish Dirac from Majorana neutrinos



Propagation phase

E=p>m = e

-i(Ek t-pkL) N

¢

—i(mlg /(2E))L

2

3
k=1

N
Z

1178

- U

> d

P

> W

Coherent propagation of different mass eigenstates over long L




Oscillation probability (in practical units)

P(v,(L=0)—> v, (L)) = 511' -
Am; eV ?] Llkm]

1,3
4Re( ) U, U, U,U, sin’1.27

, E|GeV
kok'>k Mixing,rs_define C — [ ] v
Maximum L/E Oscillation term
probability
Sumgn
pairsof
mass
eigenstates
Ami. = m;—m; Am,+ Am;, + Am:, =0

Neutrinos oscillate if massive and masses are non degenerate
and
if mixing between mass and weak eigenstates




One mixing negligible : effective 2-family approximation

cosd sin &
eg. v,rv, U=l 7 ““ | 1 mixing angle, no phase
¢ —sind,, cosd,,

Am?, L

P(v, »v,)=sin’20,, sin°(1.27 -

)

All mixings small : effective 2-family approximation

(1 6. 6. )

eu er
all Vl ~ Vk U~ _ge,u 1 Qm
\_ge,[ _glu,[ 1 )

Am. ., L

PO, >v,.)=(20,) sin’(1.27 i =y




Strong mass hierarchy : effective 2-family approximation

if |my; > m;,m,|like quarks and charged leptons A
A&
Am* =m’ —m; ~ m; —m;
Sm’ =m, —m; Am?
Am*> > Sm’ V
dSm=—— >
U Vv,
L/ E region where Am*L / E causes oscillation Iﬁ2
A%
and om’L/E ~0

U
P(v, —>Vl,¢,)zsin22 0 sin*(1.27Am*E / L)

1’
Sin 2(9317 4‘

Physics governed by: o Am?
e family composition of v, only



Example of 2-family approximation: large mixing and strong mass hierarchy

p('i/ugpu\) P<Z/,LL=Z/‘T>

I ~oscillation in phase (2-family like)

from source composition from first process

E =1GeV
strong mass hierarchy
Am® =3x107eV? — A =825km
Sm’ =1x107"eV? - A=2.5 x10"km
large mixing
-0.567 0.820 -0.0782

U=| 0515 0.279 -0.811
0.643 0.500 0.580

10°
L(km)

oscillation damping for large Am? - (
TR

X 3
[ [ [ o I.SA— :
dispersion and resolution in L/E j

ey T



Matter effect on neutrino oscillations

e Propagation phase in matter for weakly interacting particles

e'PXeiEt _, o!TPX p—iEt n=1+27p f(0)/ E
E, =1MeV : O<|n-1= 6.10_19§p[g cm™”] <1

°*Vv,,V,,V,,V, have ditferent interactions thus 7

[ ]
e, u,t,s °

Vou:T€ 4V, , . +te ,q (NO)
v,+te —ev, (CO)
1% no interaction

A

e Mass eigenstates have different family eigenstates composition

— Coherence of mass eigenstates propagation is affected by matter



Matter effect on neutrino oscillations

Oscillation enhancement

Oscillation can be enhanced by matter and is maximum for

given electron density p,(E | Am’,0) where mixing is full

even if mixing in vacuum is extremely small

MSW effect

If neutrinos travel through medium where p, varies and crosses slowly p,

(e.g. through the Sun): v, created in the Sun core may disappear totally into v

by reaching the Sun surface.

Energy spectrum distortion
Pr = Pr(E)



Solar neutrino oscillation experiments

Firsts experimental hints of neutrinos oscillation
dates back from 1968

The solar neutrino deficit problem



nuclear fusion pp cycle

4 'H>*He+2e" +2 v_+25 MeV

@(Sun) =1.8x10%y, s7'
@(Earth) = 6.5 10" v, cm™ s

°Vv, 99.75% of flux:

bound by Sun luminosity
very low energy

very difficult to detect
extremely low rate

e Strong correlation v,, —v, fluxes

10
1on
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103
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10

0.1

Radiochemical

Experiments

v, +(Z,A) > e +H(Z +1,A)

T(Z,A +1) =10 days

Counting experiment

Low E threshold
Ga Cl

|

CHLORINE

Water Cerenkov

v+e >Vv+e

v,te —>e +vV,
High E threshold
Measure E, 0, t

KAMIOKANDE
SuperK




Measured event rates v.z. SSM predictions

Bahceall-Finsonneault 98

GNO

+1.2
deioE

65.8" 105

1,041 1895

\ AN

75.4178 TBLE

+0. : ¢
0.465 + 0.005% 013 274 0.54+0.07

e 2.56+0.23

SuperK Eamicke  SAGE

1 H,0 (za

(ralll

Theory ™ "Be m P~D. DPeD Experiments pm

5B l CNO

Overall flux deficit
0.3 < P" | @ < 0.6

A Crude solution
meas red 0 o
@, " ~®@,; " bound by Luminosity

@ ~0.5 @F' not well known

D" ~0 not well known

No astrophysical explanation

Contradiction with strong @7’ — @"* correlation




Ve Vi (V) Vi, V) Oscillation Signals?
Inside the Sun? Between Sun-Earth?

- Total flux too low by factor 0.3-0.5 in all 6 experiments

Date/SSMygge
=] (=]

b
= New!(5~5.5MeV)

SK 1117day 22.5kt ALL (Prefiminary)

50-20Ma¥
! i, emror ly—a

irnl’-m,l’

i

not used for the oscillation
analysis (sys.err. under study)

v¥/NDF = 13.7/17

L] a8 10

- E spectrum distortion:
SuperK and SSM spectra agree (E, >6.5 MeV):

- Seasonal effects:
Effect of Sun-Earth distance variation (besides 1/L?)
SuperK flux time dependence agrees with 1/L ?(t)

Ll

JV'/E:
V
T T T

0.4
x2

0.3 '—¢t 4 1 X L L - T

SK 1117day 5.5-20MeV 225k
without eccentricity correction
{Praliminary}

4.1/7 dof (76 %)

- Day/Night effect: matter effect inside Earth ?
SuperK flux time dependence compatible with no effect

D-N \

(D+N)/2
Y.Suzuki Neutrino 2(

= —0.034 + 0,022

Flux deficit is the only smoking gun

)00

Y.Susuki Vietnam 20(

'0 0.3

04

L | L
Al DayNight D5D4 D3 D2D1 N1 N2 N3 N4 N5



Global fit for v, > v, (v, 6 or v,)

active

R W N AR W

W | T PR B A
e

Allowed by SK

&;10 :
= : Excluded by SK
3 : Day/Night spectrum only
sl ]
- Allowed by Ga+CI+SK
10° L Flux measurements only
7 T,
™ Oscillation in Sun matter
10°F @95% C.L. f
“,Oscillation in vacuum
e “"‘
-10 :
10
Yt Wt w? 0 18

Y.Suzuki Neutrino 2000
Y.Susuki Vietnam 2000

tan_2 6
S~ Note



Global fit for v, > v, (v, 6 or v,)

(

2 solutions atsin” 260 ~ 1
Am* =107 =107 eV?
“ Am* =107 eV*

0°L @95% C.L.

10
10 «10 Ve_) VS
disfavoured at 95% C.L.
=11
9 =3 W =

2
10 10 10 10 1 10

10
2
Y.Suzuki Neutrino 2000 tan” 6 \ N
Y.Susuki Vietnam 2000 Note




Solar neutrino oscillation: Summary and Future

The solar neutrino deficit can be explained by v, oscillation to
active neutrinos

@ 95% C.L. 2 sets of parameters are favoured by combining
all data

Am* =107 eV’
Am* ~ 1077 eV?

sin” 20 ~1 (maximum mixing) {

@ 95% C.L. oscillation to sterile neutrinos is disfavoured

SNO: measures independently the CC and NC solar event rates
(NC rate unaffected by oscillation between active neutrinos)

KAMLAND, BOREXINO: Very LBL reactors experiments (L>100 km)
(from 2001) reach Am’ > 107 eV’



Neutrino Oscillation Experiments at Accelerators

Motivation

Search for neutrinos with masses of cosmological relevance:
“Hot dark matter” candidates with m > 1 eV
with sensitivity to P > 10--10 (given previous results)

m, > VAm? > 1eV
High sensitivity = low intrinsic background = well know source

Large Am? = high energy
High sensitivity + Large Am? = accelerator experiment




Neutrino Oscillation Experiments at
High Energy Accelerators

CHORUS and NOMAD short baseline experiments

Search for v, —v, oscillation
v,appearance in v free (~10°) v, beam
at the CERN SPS Wide Band Neutrino Beam

Sensitivity P, (v,~v,) > 10



Same beam, Complementary concepts

NOMAD: v, signal extraction technique: excess of events in kinematics box

Signal Background from NG

No p in final state

CHORUS: Observation of the t-lepton track produced in CC v_ interactions
in 770 kg nuclear emulsion target : “kink” topology

1'.I"l:-
___...____

AT B

interaction '

- =
-
-

e
See talk by K.Niwa “Kink ~decay : v

1L



NOMAD:

e expects 55.2 + 5.2 background events
e observes 58

e would have seen 14937 v_,

would all v, have oscillated

(v, —>Vv,)<2.03x10~*

OS C

CHORUS:

e expects 1.2 background events
e observes 0

e would have seen 10018 v_,

would all v, have oscillated

P (v, —>v,)<34x10™*

relaxed selection cuts:

e CHORUS is able to detect events:

Results
M. Mezzetto Neutrino 2000
P.Astier at al. CERN-EP-2000-049)

WOB T T IIIII T II|IIII| T IIIIIIII T I TTTI1
a HORUS:/. .
C E531'§ ’
- NOW , +» CCFR I
10 2 - ; «E’ 1 =
= S t CHARM 11 ]
N> C , '.‘ ) ]
Ol 2 T
N_10 _
- = -
< C ]
V. oV ]

e M

- CDHS - ]

Woiw 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 L1111
T 10 ° 10 ° 10 |

Sim221km

3.3 background expected

4 events observed [E.Eskut at al. CERN-EP-2000-0??) ]




Neutrino Oscillation Experiments at
Low Energy Accelerators

Search for 1/, — V, oscillation at rather large Am” >~ 0.1V’
Sensitivity P (v -v,) > 107

0sC

Concept:
e 800 MeV p beam dump

e 7", 1" stopped and decays at rest
eonly v ,,v, v, produced (below 53 MeV)

eAlmost N0 v, (<107 )



e 800 MeV p beam dump
¢ 2ndry 7,u stopped in dump
e mostly v ,v ,v, produced

in 7°, 4" decays at rest
below 53 MeV

«Almost no v, (<107)

oscillation search
E, <3S3MeV

Signal: Inverse 3 decay
V.+p—oe'n

Concept

-3 zzeez v Irom Decays/Captures at Rest __

10 ¢
1 Vuat > u',)
=10 'l
10 & |I
b =
Vul® > evp,)
1 1- v ﬁ—_',-H::{_'-
y | el ¢ o % |
10 £ ""J‘J""V_(+_)e+ > |
L F St e ﬂ vV, .
: !J '__' | &
ol
P
=12 5B
I £
ir
i r | § |
=13 ¢ i : ‘ :
it P
| Ve(ﬂ_ - e_‘7eV,,) Vlu(/l —> e Ve_vl‘)iir ii
-— 'I-‘-]l -y ffﬁ;_._;q:'L -__'_-L_\_ i I—! |i
!U -: __.-"_rr: = = . _H-L‘ '-.I |
g e il s 7 Ir-i Ve(7f+—>e w3
| a0
- 1k i
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LSND

Results expects 50.3 v, background events
observes 83

KARMEN-II
excess 32.719.2

expects 12.29 £0.69 v, background events
all measurememts well fitted by

observes 11 _ _ . .
v, —>V, oscillation

10 %

BUGEY

T — s N e — O :
i 4 BNLE776 |~ NOMAD ™ ]

Am’ [eV?]
»
®
zy
=

KL\RMEN"
" Feb.1997-Mar.2000

[ (90% CIL} LSND 1993- 98

0 -1 g max(lhd)-2.3/4. 6 InL-units

: LSND: G.Mills Neutrino 2000
CHOOZ ; ] KARMEN?2: K.Eitel

10 10 10 , 1
<in” 20

Final word by MiniBOONE at Fermilab in 2002(3)




InL [arbitrary units]

InL [arbitrary units]

Preliminary joined -
KARMEN2-LSND analysis

Joined likelihood =~ .

3 Y
=1 Ln ) Ln =3 Ln un
| | | | | | |

Statistical analysis of small event numbers
is very touchy: Bayesian v.z. frequentist

variations
CERN 2000-005 Yellow report

The result of two analysis is NOT the overlaﬁjl

of an exclusion contour on a signal contour
K. Eitel hep-ex-990906 and
New J. Phys. 2(2000)1

3 “sensible” common
favoured regions

| LA

90%

99%

LSND alone
KARMEN?2,
NOMAD,.BUGEY
excluded



Atmospheric Neutrinos Oscillation Experiments

Counting rates:

Beautiful atmospheric

. . CantRined |nteasctions
neutrinos beam line uf ™ A e P o

E 4% I"'I < > (o e
% o ! \ l !IE: /,,—\\ nJ~geing Muons
= e |
= xg 1| i L / I.

i i !

o S L TR

I' K
% } % Sopping \.

!

1 Muons \
LS

SR R —

10 i " -m-‘ g
Neutrino Energy {GaY)

Wide L/E range

E measured

L measured from 0
How precise are the flux
MC predictions?




Rates (vﬂ /Ve )Data

. (Vﬂ/ve )MC

most model and experiment systematic cancels

SuperK (Water Cerenkov tank) H.Sobel Neutrino 2000
Y.Susuki Vietnam 2000
Sub-GeV events Multi-GeV events
R=0.652+0.019+0.051 0.668 +0.034 +0.079

Soudan-2 (tracking calorimeter)

R=0.68+0.11+0.06 T.Mann Neutrino 2000

Macro (tracking calorimeter)
R=0.731%0.028 £ 0.044

B.Barrish Neutrino 2000

Is the v, deficit due to v, — v, oscillation?

i ? 20?21 2
Whatis v, ? v, 2 v.?2 v !

Not just rates, but L. and E dependence of rates needed to confirm oscillation




o e i =

:++ A« 1 : riwmp - mda dnd 1
SuperK e o ; q:";_: ‘ Sub-GeV T
L(0) and E dependence :| ; E <400 MeV |
of rates *:E:i%ti}is_,; i :.L::.:If:.{fiff_r

L -1
T i ] G mrﬁm |
"whnsel = T AR

3 ] - B

g :——““"'—'“—:;—I-I Sub-GeV
s & 1 it | |E>400 MeV

i -,
} i e E<1.33 GeV
_I_ data 4 E-lu:ctr;r_:._l_jﬁll Muons | 2

—— MC no oscillation

= E B B 7 %

- s 7 - mmﬁr »

B T L I | I S | - C =
k] m A TR T8 g = aT TR

Deficit depends on | ; :
*Ei ol S : Multi-GeV
Land E LT Wy P o B> 133Gev

‘o _H++ 3
Electrons : Muons
e .
Up-going Down-going _ sl
cos 0 =-1 cos0=1 I W el FC+PC events
L=13000km  L=15km === “Trm |E>]33GeV
" T Muons



Am?

Superk vV, ©V, (eV?)
Signal region =
Best fit 5 107
3.2 107

sin’ 20 = 1 (full mixing)
Am® =3.2x 107 eV’

&““: 1.5 103
Macro =l 10
sin’ 20 = 1 E
2 -3 2 e
— 99 9% C.L. b
Soudan 2 -
sin’ 20 = 0.9 J |
L-_LI._I_:I_i_J_n.h_l A il A N - B i T

10+

Am* ~7.9x 107 eV’ 06 Or 08 03_ 1
sin?2 0



SuperK checks of the oscillation hypothesis v L OV,

Sub GeV

Multi GeV

—_ MC best fit
+ MC no oscillation
data

number of events

number of events

Angular distribution

=UuD-GeV e-llka

=

—oub-GaV Li-like

200

100

Multi-GeV e-like

i |. | - | I

)



SuperK checks of the oscillation hypothesis v , OV,

" MC best fit
—~ MC no oscillation

Angular distribution
T data

upward going v, events

700 [ |Fl][l [

— MC best fit

k. ° ° ° smicuats
— MC no oscillation . . L/E distribution
data [ i i
- [ - u-like
¥ S P IR P YRR EA RAMH B 7 e-like L gy
= 4 Upward-thiough going 1 Upwarc-stopping u i t .
T“ . % 400 400 __ :.t il
hl‘ “5 .: E-
- q; - :
.-,E 5 : + § 300 300 :—
' - - i ' rp*
= 200 - ~ j200 [ TL-
Y= y e
®oot : S
e~ Y AT TIOVERY P PSP () I O il WSO O 100 " 190
= .1 08060402 0 -1 08 .0.6-04-02 0 i r
:- [ Rovwd vovnd il 1w o i
cos 0 cos () ’ 1 050 1 anT 00
km/GeV)
higher lower LargeE  SmallE LargeE SmallE
energy energy Small L SmallL LargeL LargeL




v, < Vv, or v, < voscillation?
Discrimination based on L. dependence of the matter effect in Earth

v, < v, excluded at 99% C.L.

v, < v, orv, < v, oscillation?

e Data is compatible with a some v,— v, mixing
* v,— V. mixing must be small:
- all v, data agree with model predictions without oscillation

- large v — v, affect v, data significantly

e Strong restriction from reactor experiments



v, < Vv, or v, < voscillation?
Discrimination based on L (or 0) dependence of the matter effect in Earth
Matter has no effect on v, <> v_ oscillation: same o,

Matter effects suppress v, <> v oscillation and

suppression increases with E (not trivial!)

Suppression increases with amount L of matter traversed (69)

L]

1 | | | | I | | I

- up-going p from up-going v,

g
|

- interacting in rock + :

~ £ high energy events = Y, OV,
%..- :... + = — V,u > V.,
B L X + dq
i-Fy= - ata
- E
B E .
= E .

=¥ 1 v, ©v, excluded at 99% C.L.

ﬂ_- - e e (o e .

-1 ool cos9 0

L=13000km L=500km



Absolute E , spectrum at

CHOOZ Nuclear Reactor Long i
=1km

Base Line (1 km) experiment

E . spectrum measured

E . spectrum expected if no oscillation
Calculated and measured

> flux and -
° energy spectra at L=0
agree to ~ 2% (Bugey 1995)

R ‘ PP nd N
Signal: Inverse n 3 decay owl T ‘}‘ .

1/ + Qs - -

Ve +p—)e n T

<E.>~ 3 MeV H
¢ E,, (MeV)

L/ E ~ 10_3 R = 1.010£0.028 (stat) +£0.027 (syst)

No v, <> v_ oscillation signal



Is v, <> v, oscillation in atmospheric neutrinos

fully excluded by CHOOZ/PaloVerde negative result?

3-family mass hierarchy model (Sun + Atmospheric signals)

Am’ ~3.5x 107 eV’ : atmospheric

Sm’ <107 eV’ : solar
. ——— SK90% C.L. 1
LT ——— SK99% C.L.
", ——— CHOOZ excluded 90% C.L.
=3 |
SN ! Space for
@ :
E | small v <> v, mixing
< | H ¢
=3 =
10 ¢
SK 80%CL
CHOOZ (exciuda) SK $9%CL
derresborsbeo abode il b e bl

6 02 04 08 0B 1
0 sin” 20 1



Summary of oscillation signals

3-family mass hierarchy model
Am? = 1.5-5.0x103eV? :atmospheric

+ negative v, <& v, : reactor
2 -5 2 .
om-<107eV Ve >V, .., :solar y
full mixing =

LSND v, <> v, at small mixing sin’ 20 ~~ 10~ — 10~
large Am® =~ 0.1 — IeV’
requires 4 eigenstates and a v, neutrino
A At
e.g. m,<m,<m,<m,

Y

)
Amj gnp




How to probe/improve the atmospheric neutrino signal?

Atmospheric neutrinos - project

MONOLITH in Gran Sasso underground laboratory:
More precision on E and 0, thus L
being submitted, to start in2005

Long Base Line accelerator neutrinos - running

K2K: KEK to Kamioka mine: L =250 km
<E>=14 GeV
Am?=5.6 10 eV?
v, disappearance experiment
v, flux Near/Far (Super Kamiokande) detectors
1 year data taking : expects 29.3 + 3.4 events
sees 17
Compatible with atmospheric neutrino signal
2-sigma incompatibility with no oscillation
Statistics still small




Long Base Line accelerator neutrinos - approved, in preparation

MINOS: Fermilab to Soudan mine: L = 730 km
<E> =2 GeV tuneable for aimed Am?
v, disappearance experiment
v, flux Near/Far detectors
v, Energy spectrum distortion Near/Far detectors

CCv, /NC

Data taking to start in fall 2003

Long Base Line accelerator neutrinos - submitted

OPERA: CERN to Gran Sasso underground laboratory

ICANOES CERN to Gran Sasso underground laboratory ???

P
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Physics Motivation

Confirm unambiguously v, — v, oscillation explanation to atmospheric v,
deficit

How?

Direct observation of CC v_ +N — 1"+ X interactions
Identified 1~ track through 1-prong decay topologies

T ey, B.R. 17.8%
T DUV, B.R. 17.4%
T >hv.(nz’") B.R.49.5%

Requirements

High sensitivity in 90% C.L. parameter space of SuperK
1.5x107° < Am’ <5.0x 107 eV? at full mixing



HOW? CERN to Gran Sasso Neutrino Beam

Long Base Line experiment

CERN CNGS new v, beam points to

OPERA detector in LNGS underground laboratory
@ 730 km from CERN

under Gran Sasso 3800 w.e.m. (1400m)

(E,)=17GeV
L =730km

— access to small Am’

Prompt v_ free beam

cosmic muons fluence ~1 m2 h-!



How?

High resolution Emulsion chambers (ECC) massive target (2kt)

Why High resolution? <T_ decay length> ~ 0.5mm

Why massive? expected v, event rate : 30 / day / 2kt

CHORUS @ CERN: 700 kg plain emulsion target sees charm decays
2 kt plain emulsion : o cost prohibitive

DONUT @ Fermilab: ECC (Fe-emulsion tracker sandwiches)

v_discover

“On-line” event analysis

- Segmented ECC target (“bricks) + Electronics detector
- Remove, process and analyse daily ~40 bricks identified to contain~30 events
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Instrumented & segmented target

HIET Tubes

OPERA detector e , TRacker Muon spectrometer

TARcET

3 Super-Modules

| | i
8 )t
P
Target: 24 planar modules - 652 t i iy
Module: Wall segmented in ECC bricks — é 7
H-V Target tracker
Wall: 6.75 x 6.75 m? x 7.5 cm Tracker: 2 planes: H& V
3264 bricks 256 7 m scintillator strips
Brick: 5” x 4” x 7.5 cm Strip: 2.6 x1cm? x 7 m
56 cells light collected by WLS fibres
10 X, - 8.3 kg read-out at both ends
Cell: 5” x 4” x 1.3 mm by 64-channel PMT
1 mm Pb layer 8 tubes / plane

0.3 mm emulsion tracker



\ OPERA ECC brick

235 000 bricks - 1.96 kt

8

Full automatization of

Brick assembly, packing

Wall construction

Removal of bricks fired by events
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Light read at both WLS fibre ends

OPERA Scintillator strip
Prob (0 p.e.) = 0.05%

target trackers
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Role 1 of target trackers: identify event brick

.....

- ot LI .
J A" i P - : P

.I_.I [y .
L. 1 .

Target structure design:

Brick size
large: easier to identify
small: less dead target
X
High scanning power +
Low cosmic/beam background
allows coarse tracking
X
Tracker resolution
identify bricks efficiently
X
Largest target transverse
dimensions
X
Brick removing strategy

Role 2 of target trackers + ECC : Hadron shower calorimetry

Kinematics analysis of v_candidates

AE

0.65

=

+0.16
E[GeV]



OPERA muon spectrometers

-identify, measure p and charge of muons

-tag Vu CC event

sﬁg
3

1m

-kinematics analysis of V_ candidates

-reduce the C— p ™ background
- + target calo: measure E, spectrum

1.55 T Dipole magnet
2 Fe walls : 12 Fe plates + 11 RPC
instrumented with RPC chambers
H-V 3.5 cm strips
3 external high resolution trackers
2-plane 3-layer 35 mm drift tubes
overall 6, = 0.5mm
Alignment is not a small issue
no beam!

no cosmic! |, Target
L < 25% forp<25GeV /c

P Magnets Fe plates + RPC
Wrong charge < 0.5 :

w( ﬂ

Spectrometer



More on the emulsion, ECC and automatic scanning
see K.Niwa’s talk

in addition to be a high resolution target, 10 X, bricks of ECC allow to:
- identify electron by multiple scattering and shower analysis
- measure electron energy by counting track segments in shower
- detect photons
- measure hadron and muon momentum by multiple scattering

- identify muon by comparing p from multiple scattering
and E from range



CNGS Beam

2L [= 730km]

T 5 ~2GeV<E
247 Am” |=3.2x 107 eV"]

E(GeV) = awresn (V. = T production)

Spectrum optimized for v, production and detection

@, (E,) ® P.""(E,|L=730km,sin’ 20, =1, Am’ =3.2x10"eV’) ® o, (E,) ® ¢, (E,)

os¢

(E,)=17GeV
4.5x 10" p.o.t./ yr

= 30 v, interactions / day in a 2 kt detector (OPERA)

= 50 v, interactions / yr for Am*> =3.2x107 eV?
= 250 v, interactions in 5 years of run

2
number v, interactions+(Am?)




Search for v_candidates : T —>e-,u,h (7 ,p)

“Long ” decays (~40 % of 1) “Short” decays (~60 % of 1)

E |[BQE - I Ba E
7 T P m m
Pb $Se$ LA~ - h S~ b ul |5
si| |si Pote Tl si| | si
on on',,—xf\\ GJ) ) I.P /’/_,,——‘x\\\\\ on o1
— <:;;\~ S~ T s -~
RN S U N
B T~ Not to scale | T
e O T
Search for a “kink” Search for a large impact parameter
0., > 20 mrad At least 2"d high p track
€ 1ink ~ 90% IP > 5-20 pm (depends of event depth)

Total € = 54% very conservative




Kinematics selection of v_candidates
in view of background reduction

T e, u h(r,p) T —>h

High p, high ,; reject Select isolated h-

low E scatters outside H shower
-, K- decays

h- scatters



Monte-Carlo estimate of background

T >e T —>u v —>h Total
charm production  (0.162 0.028 0.140 0.330

v,CC and 7’ 0.006 0.006
large 1 scatter 0.100 0.100
h~ interaction 0.100 0.100

The background is given in events for 2. 104 v, DIS CC

expected In 5 years data taking

2.25 102 p.o.t. known to 50%

test measurements
in progress



Events for maximal mixing and S years running

Signal
S-year run

T decay

Am? (in 103 eV?)
1.5 3.2 5.0

Bckegd

1.7 7.7 18.5
1.3 5.7 138
1.1 49 118

0.19
0.13
0.25

41 183 44.1

0.57

-

—

_ Background

2
number v, interactions-+(Am?)

Average expected events

expected number of events
o

Am? (eV?)

2
-2

Oy Lo b




Discovery potential 5-year run

sighificance (o)

/ | 3 o 9
Number N observed events
Probability - in equivalent # of ¢ - that background fakes signal

O
N
~
Ul
(@)}

> 5 events is a "DISCOVERY" at > 4 o

Am’ = 1.8x 107 eV’ and 5 years of run
SuperK @ 90% C.L.: 1.5x107° < Am’ <5.0x107 eV’




Sensitivity S-year run

SRR
- 90% C.L.

OPERA

SUPER-K 90%CL
....,,...-............. V 2000

107 10 1

average 90 % CL upper limit for a large # exp.®
in the absence of a true signal

@ sin2 (20) = 1
Am? (eV2) < 1.2 103 eV2



Constraint on oscillation parameters

Number of events = sin’ 28 x (Am? )2 for small Am’

10

OPERA
90 % CL in 5 years

SUPER-K 90%CL
v 2000

Example in case observed

number of events = expected
from SK best fit Am?=3.2 103 eV?

3.2 1073



Status - schedule

CNGS beam
- Construction approved December 1999
- Beam for physics May 2005

OPERA detector

- Proposal July 2000

- Presentation to SPSC on September 5, 2000
Officious

- Presentation to LNGSSC on September 11, 200

- Hope for approval end 2000

- Ready to take data in May 2005
Because of modular structure, need not be fully completed
when beam arrives.



