τ detection and ν oscillation

Gaston WILQUET

Symposium in honorem Prof. Jean SACTON

Brussels, 7 - 8 September 2000

Contents

- The neutrino identity (brief)
- Limits on neutrino masses
- Neutrino oscillation phenomenology (brief)
- Status of search for neutrino oscillation
- OPERA: search for $v_{\mu} \Leftrightarrow v_{\tau}$ oscillation in LBL accelerator experiment (refer to K.Niwa's talk)
- The neutrino mass and the mass budget of the Universe (if time allows)

The Standard Model neutrino

- The electron-neutrino ν_e is the massless, chargeless, colourless, spin 1/2, partner of the electron in the left handed SU(2) × U(1) lepton doublet
- Neutrinos also exist in 3 families like the other fermions (measured at LEP from the width of the Z^0 ; why? why 3?)

$$egin{pmatrix} \left(m{v}_e \\ e^-
ight)_L & \left(m{v}_\mu \\ \mu^-
ight)_L & \left(m{v}_ au \\ m{ au}^-
ight)_L \end{bmatrix}$$

ullet The lepton numbers L_e , L_μ , $L_ au$ are conserved independently

$$B.R.(\mu^- \to e^- \gamma) < 5 \times 10^{-11}$$

- Only v_L and \overline{v}_R have CC and NC weak interactions (P conservation is fully violated)
- If they exist, v_R and \overline{v}_L are sterile

Massless ν and $\bar{\nu}$ are distinct by their observable helicity \equiv invariant chirality

Massless neutrinos may not be overtaken and their spin cannot be flipped

What if neutrinos have (even tiny) mass Dirac or Majorana neutrinos?

- $\overline{\nu}_{+}$ emitted in β^{-} decay has $v_{\nu} < c$
 - may be overtaken and undergo spin flip $\rightarrow \bar{\nu}_{-}$
- Is it different from the ν_- emitted in β^+ decay? They only differ by L

If yes: Dirac neutrinos, like other fermions, distinguished by $L=\pm 1$ eigenvalues

If no : Majorana neutrinos, $v \equiv \overline{v}$ apparent distinction is artefact of - their V-A interactions - the difficulty to "flip spin"

Limits on the neutrino masses: 1/ Direct measurements from decay kinematics

•
$$m_{\nu_e} < 2.2 - 2.3 \ eV$$
 @ 95% C.L.

from end of E_{e^-} spectrum in $^3H \rightarrow \ ^3He + e^- + \overline{\nu}_e$ (Troitsk and Mainz experiments, 2000)

•
$$m_{\nu_{\mu}}$$
 < 170 keV @ 90% $C.L$ from E_{μ^+} in $\pi^+ \to \mu^+ \nu_{\mu}$ (Assagam et al, PSI, 1996)

•
$$m_{\nu_{\tau}} < 18.2~MeV$$
 @ 90% $C.L$ from phase space in $\tau^{\pm} \to 3(5)\pi^{\pm}\nu_{\tau}(\bar{\nu}_{\tau})$ (LEP -ALEPH 2000)

Limits on the neutrino masses: 2/ Big Bang cosmology

• At $T \approx 2 \times 10^{10} \, K \approx 2 \, MeV \gg m_v$ $(t = (1/kT)^2 \approx 0.25 \, s)$ γ and v / \overline{v} decouple: $v + \overline{v} \nleftrightarrow \gamma + \gamma$

$$n_{\nu} \approx n_{\gamma}$$

$$T_{\nu} \approx T_{\gamma}$$

- Taking account of
 - the thermodynamics of fermions/bosons
 - the adiabatic expension of the univers
 - γ and e^+/e^- decouple: $e^+ + e^- \nleftrightarrow \gamma + \gamma$ at $T \approx m_e \approx 0.5 \ eV$

$$n_{\nu}^{0} = \frac{3}{11} n_{\gamma}^{0} (= 412 \text{ cm}^{-3}) = 113 \text{ cm}^{-3} \text{ at present epoch}$$

$$T_{\nu}^{0} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}^{0} (= 2.73 \text{ K}) = 1.9 \text{ K} \approx 2 \times 10^{-4} \text{ eV}$$

• Yet undetected primeval neutrinos are non-relativistic if $m_{\nu} > 10^{-4} \text{ eV}$

$$m_{\nu} \times n_{\nu}^{0} = \rho_{\nu}^{0} < \rho_{c} = \frac{3H_{0}^{2}}{8\pi G_{N}} \approx 4.5 \text{ keV cm}^{-3}$$
with $H_{0} = 65 \pm 7 \text{ km s}^{-1} \text{ kpc}^{-1}$

$$\sum m_{\nu_{i}} \leq 60 \text{ eV}$$

Limits on the neutrino masses: 3/ Supernovae SN1987A

- February 23, 1987, 7h33 UT, 23 neutrino interactions in 3 underground experiments (Kamiokande, Japan; IMB, Ohio; Baksan, Caucase) in 12.3 s time gate
- SN1987A: death of Sanduleak in LMC at 150 000 ly SN-II models: 99% of ~2. 10^{46} J released \rightarrow ~ 10^{58} v with $\langle E_{\nu} \rangle = 10$ MeV

after 150 000 y : 10s flash of ~4. 10^{43} v cross the Earth

• From measured and model energy spectrum model emission time dispersion measured arrival time dispersion

Confirmation of the SN-II models

$$m_{\bar{\nu}_e} \leq \sim 25 \ eV$$

• Identical fluxes of all ν and $\overline{\nu}$ species expected Events expected to be $\overline{\nu}_e$ (much larger $\overline{\nu}_e + n \rightarrow e^- + p$ cross-section)

Limit on the neutrino masses: $4/0\nu\beta\beta$ decay experiments

• The nuclear $0\nu\beta\beta$ decay experiment is THE ν spin-flip experiment

$$(A,Z) \rightarrow (A,Z+2)+2 e^{-}$$
 $\Delta L=2$

Process possible if the

emitted right-handed $\overline{\nu}_e$ together with e^- absorbed as left-handed ν_e to produce e^-

Massive Majorana neutrino:

$$v_e \equiv \overline{v}_e$$
 and spin flipped

$$T_{1/2}({}^{76}_{32}Ge \rightarrow {}^{76}_{34}Se + 2e^{-}) > 10^{25} y \quad @ 90\% C.L.$$

$$m_{\nu_e} \leq 0.46 \ eV$$

Massive neutrinos: Mixing & Neutrino oscillations

B.Pontecorvo1957B.Pontecorvo, V.N. Grimov1967

$$v_l$$
 $l = e, \mu, \tau$ family eigenstates v_k $k = 1, 3$ mass eigenstates
$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \qquad v_l = \sum_{k=1}^3 U_{lk} v_k \\ \sum_{k=1}^3 |U_{\alpha k}|^2 = 1$$
 $l = e, \mu, \tau$ 4 (6) parameters
$$\begin{cases} 3 & |U_{lk}| \\ 1 & (3) \text{ phases} \end{cases}$$

Straightforward extension to more than 3 neutrinos families, e.g. sterile neutrinos

Oscillation cannot distinguish Dirac from Majorana neutrinos

Propagation phase

$$E \approx p >> m \Rightarrow e^{-i(E_k t - p_k L)} \approx e^{-i(m_k^2/(2E))L}$$

$$\sum_{\mu} \int_{\nu_{\mu}: U_{\mu k}}^{\mu^+} v_k v_{\mu} \cdot U_{\nu_{\tau}} \cdot U_{\nu_{\tau}} \cdot U_{\nu_{\tau}}$$

$$n \begin{cases} d & m \\ d & m \\ u & u \end{cases} p$$

Coherent propagation of different mass eigenstates over long L

Oscillation probability (in practical units)

$$P(v_{l}(L=0) \rightarrow v_{l'}(L)) = \delta_{ll'} - 4 \operatorname{Re}(\sum_{k,k'>k}^{1,3} \underbrace{U_{l'k}^{*}, U_{l'k}U_{lk}, U_{lk}^{*}}_{Mixings define} \underbrace{Sin^{2} 1.27 \frac{\Delta m_{kk'}^{2}[eV^{2}] L[km]}_{L/E}}_{Scillation term} - \underbrace{E[GeV]}_{Dairs of mass eigenstates}$$

$$\Delta m_{kk'}^{2} = m_{k}^{2} - m_{k'}^{2}$$

$$\Delta m_{l2}^{2} + \Delta m_{23}^{2} + \Delta m_{31}^{2} = 0$$

Neutrinos oscillate if massive and masses are non degenerate and if mixing between mass and weak eigenstates

One mixing negligible: effective 2-family approximation

e.g.
$$v_{\tau} \approx v_{3}$$
 $U \approx \begin{pmatrix} \cos \theta_{e\mu} & \sin \theta_{e\mu} \\ -\sin \theta_{e\mu} & \cos \theta_{e\mu} \end{pmatrix}$ 1 mixing angle, no phase
$$P(v_{e} \rightarrow v_{\mu}) = \sin^{2} 2\theta_{e\mu} \quad \sin^{2} (1.27 \quad \frac{\Delta m_{12}^{2} L}{E})$$

All mixings small: effective 2-family approximation

all
$$v_l \approx v_k$$

$$U \approx \begin{pmatrix} 1 & \theta_{e\mu} & \theta_{e\tau} \\ -\theta_{e\mu} & 1 & \theta_{\mu\tau} \\ -\theta_{e\tau} & -\theta_{\mu\tau} & 1 \end{pmatrix}$$

$$P(v_l \to v_{l'\neq l}) = (2\theta_{ll'}) \quad \sin^2(1.27 \quad \frac{\Delta m_{kk'}^2 L}{E})$$

Strong mass hierarchy: effective 2-family approximation

if $m_3 \gg m_1, m_2$ like quarks and charged leptons

$$\Delta m^2 = m_3^2 - m_1^2 \approx m_3^2 - m_2^2$$

$$\delta m^2 = m_2^2 - m_1^2$$

$$\Delta m^2 \gg \delta m^2$$

L/E region where $\Delta m^2 L/E$ causes oscillation and $\delta m^2 L/E \approx 0$

$$P(v_l \rightarrow v_{l' \neq l}) \approx \sin^2 2\theta_{ll'}^{eff} \sin^2 (1.27 \Delta m^2 E / L)$$

$$\sin^2 2\theta_{ll'}^{eff} = 4 \left| U_{l3} U_{l'3} \right|^2$$

Example of 2-family approximation: large mixing and strong mass hierarchy

$$\Delta m^2 = 3 \times 10^{-3} \, eV^2 \rightarrow \lambda = 825 km$$

$$\delta m^2 = 1 \times 10^{-7} \, eV^2 \rightarrow \Lambda = 2.5 \times 10^7 \, km$$
large mixing

$$U = \begin{pmatrix} -0.567 & 0.820 & -0.0782 \\ 0.515 & 0.279 & -0.811 \\ 0.643 & 0.500 & 0.580 \end{pmatrix}$$

qisbersion and resolntion in
$$\Gamma \backslash E$$
 $\left\langle \sin^2 \left(1.27 \frac{\Delta m^2 L}{E} \right) \right\rangle \Rightarrow \frac{1}{2}$

Matter effect on neutrino oscillations

Propagation phase in matter for weakly interacting particles

$$e^{ipx}e^{-iEt} \Rightarrow e^{inpx}e^{-iEt}$$
 $n = 1 + 2\pi\rho f(0)/E$
 $E_{\nu} = 1MeV$: $0 < |n-1| = 6.10^{-19} \frac{Z}{A}\rho [g cm^{-3}] \ll 1$

• v_e, v_μ, v_τ, v_s have different interactions thus $n_{e,\mu,\tau,s}$:

$$v_{e,\mu,\tau} + e^-, q \rightarrow v_{e,\mu,\tau} + e^-, q$$
 (NC)
 $v_e + e^- \rightarrow e^- v_e$ (CC)
 v_e no interaction

- Mass eigenstates have different family eigenstates composition
- **⇒** Coherence of mass eigenstates propagation is affected by matter

Matter effect on neutrino oscillations

Oscillation enhancement

Oscillation can be enhanced by matter and is maximum for given electron density $\rho_R(E \mid \Delta m^2, \theta)$ where mixing is full even if mixing in vacuum is extremely small

MSW effect

If neutrinos travel through medium where ρ_e varies and crosses slowly ρ_R (e.g. through the Sun): ν_e created in the Sun core may disappear totally into ν_μ by reaching the Sun surface.

Energy spectrum distortion

$$\rho_R = \rho_R(E)$$

Solar neutrino oscillation experiments

Firsts experimental hints of neutrinos oscillation dates back from 1968

The solar neutrino deficit problem

Radiochemical

$$\nu_e + (Z,A) \rightarrow e^- + (Z+1,A)$$

Cl

 $\tau(Z,A+1) \approx 10 \text{ days}$

Counting experiment

Low E threshold

Ga

Experiments

Water Cerenkov

$$v + e^- \rightarrow v + e^-$$

$$\nu_e + e^- \rightarrow e^- + \nu_e$$

High E threshold

Measure E, θ , t

$$\Phi(Sun) = 1.8 \times 10^{38} v_e \ s^{-1}$$

$$\Phi(\text{Earth}) = 6.5 \ 10^{10} \ v_e \ cm^{-2} \ s^{-1}$$

\$\nu_{pp}\$ 99.75% of flux:
 bound by Sun luminosity
 very low energy
 very difficult to detect
 extremely low rate

• Strong correlation $v_{Be} - v_B$ fluxes

Overall flux deficit

$$0.3 \leq \Phi^{meas} / \Phi^{pred} \leq 0.6$$

A Crude solution

$$\Phi_{\nu pp}^{meas} \approx \Phi_{\nu pp}^{pred}$$
 bound by Luminosity
$$\Phi_{\nu B}^{meas} \approx 0.5 \quad \Phi_{\nu B}^{pred}$$
 not well known
$$\Phi_{\nu Be}^{meas} \approx 0$$
 not well known

Contradiction with strong $\Phi_{vBe}^{pred} - \Phi_{vB}^{pred}$ correlation No astrophysical explanation

$v_e \rightarrow v_x (v_\mu, v_\tau, v_s)$ Oscillation Signals? Inside the Sun? Between Sun-Earth?

- Total flux too low by factor 0.3-0.5 in all 6 experiments
- E spectrum distortion: SuperK and SSM spectra agree ($E_n > 6.5 \text{ MeV}$):
- Seasonal effects: Effect of Sun-Earth distance variation (besides 1/L²): SuperK flux time dependence agrees with 1/L ²(t)
- Day/Night effect: matter effect inside Earth?
 SuperK flux time dependence compatible with no effect

$$\frac{\mathbf{D-N}}{(\mathbf{D+N})/2} = -0.034 \pm 0.022^{+0.013}_{-0.012}$$

Flux deficit is the only smoking gun

Global fit for $V_e \rightarrow V_{active}$ $(V_\mu \text{ or } V_\tau)$

Y.Suzuki Neutrino 2000 Y.Susuki Vietnam 2000

Allowed by SK All measurements

Excluded by SK Day/Night spectrum only

Allowed by Ga+Cl+SK Flux measurements only

Oscillation in Sun matter

Oscillation in vacuum

 $\tan^2 \theta$

Note

Global fit for $v_e \rightarrow v_{active}$ $(v_\mu \text{ or } v_\tau)$

2 solutions at $\sin^2 2\theta \approx 1$

$$\Delta m^2 \approx 10^{-4} - 10^{-5} \, eV^2$$

$$\Delta m^2 \approx 10^{-7} eV^2$$

 $\nu_e \rightarrow \nu_s$ disfavoured at 95% C.L.

Y.Suzuki Neutrino 2000 Y.Susuki Vietnam 2000

Solar neutrino oscillation: Summary and Future

The solar neutrino deficit can be explained by v_e oscillation to active neutrinos

@ 95% C.L. 2 sets of parameters are favoured by combining all data

$$\sin^2 2\theta \approx 1$$
 (maximum mixing)
$$\begin{cases} \Delta m^2 \approx 10^{-5} eV^2 \\ \Delta m^2 \approx 10^{-7} eV^2 \end{cases}$$

@ 95% C.L. oscillation to sterile neutrinos is disfavoured

SNO: measures independently the CC and NC solar event rates (NC rate unaffected by oscillation between active neutrinos)

KAMLAND, BOREXINO: Very LBL reactors experiments (L>100 km) (from 2001) reach $\Delta m^2 \geq 10^{-5} \, eV^2$

Neutrino Oscillation Experiments at Accelerators

Motivation

Search for neutrinos with masses of cosmological relevance: "Hot dark matter" candidates with $m_{\nu} > 1~eV$ with sensitivity to $P_{osc} > 10^{-3}$ - 10^{-4} (given previous results)

$$m_v > \sqrt{\Delta m^2} > 1 \text{ eV}$$

High sensitivity = low intrinsic background = well know source Large Δm^2 = high energy High sensitivity + Large Δm^2 = accelerator experiment

Neutrino Oscillation Experiments at High Energy Accelerators

CHORUS and **NOMAD** short baseline experiments

Search for $v_{\mu}-v_{\tau}$ oscillation v_{τ} appearance in v_{τ} free (~10-6) v_{μ} beam at the CERN SPS Wide Band Neutrino Beam

Sensitivity $P_{osc}(v_{\mu}-v_{\tau}) > 10^{-4}$

Same beam, Complementary concepts

NOMAD: v_{τ} signal extraction technique: excess of events in kinematics box

CHORUS: Observation of the τ -lepton track produced in CC ν_{τ} interactions

in 770 kg nuclear emulsion target: "kink" topology

$$τ_{\tau} = 2.9 \quad 10^{-13} \sigma$$
 $< βγcτ_{\tau} > \approx 1.5 \text{ mm}$

interaction "Kink" decay $\overline{\mathbf{v}}_{\mu}$

See talk by K.Niwa

NOMAD:

- expects 55.2 ± 5.2 background events
- observes 58
- would have seen 14937 ν_{τ} , would all ν_{μ} have oscillated

$$P_{osc}(\nu_{\mu} \to \nu_{\tau}) < 2.03 \times 10^{-4}$$

CHORUS:

- expects 1.2 background events
- observes 0
- would have seen 10018 ν_{τ} , would all ν_{μ} have oscillated

$$P_{osc}(\nu_{\mu} \to \nu_{\tau}) < 3.4 \times 10^{-4}$$

• CHORUS is able to detect events: relaxed selection cuts:

3.3 background expected

4 events observed

Results

M. Mezzetto Neutrino 2000 P.Astier at al. CERN-EP-2000-049)

E.Eskut at al. CERN-EP-2000-0??)

Neutrino Oscillation Experiments at Low Energy Accelerators

Search for $\bar{\nu}_{\mu} \to \bar{\nu}_{e}$ oscillation at rather large $\Delta m^{2} > \sim 0.1 eV^{2}$ Sensitivity $P_{\rm osc}(\bar{\nu}_{\mu} - \bar{\nu}_{e}) > 10^{-3}$

Concept:

- 800 MeV p beam dump
- π^+ , μ^+ stopped and decays at rest
- only v_{μ} , \overline{v}_{μ} , v_{e} produced (below 53 MeV)
- •Almost no $\bar{\nu}_e$ (<10⁻³)

- 800 MeV p beam dump
- 2ndry π,μ stopped in dump
- mostly $\nu_{\mu}, \overline{\nu}_{\mu}, \nu_{e}$ produced in π^{+}, μ^{+} decays at rest below 53 MeV
- •Almost no $\bar{\nu}_e$ (<10⁻³)

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillation search

 $E_{\nu} < 53 MeV$

Signal: Inverse β decay

$$\overline{\nu}_{\rm e} + p \rightarrow e^+ n$$

Concept

Results

KARMEN-II

expects $12.29 \pm 0.69 \ \overline{\nu}_e$ background events observes 11

LSND

expects 50.3 $\bar{\nu}_e$ background events

observes 83

excess 32.7 ± 9.2

all measurements well fitted by

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillation

LSND: G.Mills Neutrino 2000

KARMEN2: K.Eitel

Final word by MiniBOONE at Fermilab in 2002(3)

Statistical analysis of small event numbers is very touchy: Bayesian v.z. frequentist variations

CERN 2000-005 Yellow report

The result of two analysis is NOT the overlap of an exclusion contour on a signal contour

K. Eitel hep-ex-990906 and New J. Phys. 2(2000)1

(b)

Atmospheric Neutrinos Oscillation Experiments

Wide L/E range
E measured
L measured from θ
How precise are the flux
MC predictions?

$$R = rac{\left({{
u _\mu }/{
u _e }}
ight)_{Data}}{\left({{
u _\mu }/{
u _e }}
ight)_{MC}}$$

Rates $R = \frac{\left(v_{\mu}/v_{e}\right)_{Data}}{\left(v_{\mu}/v_{e}\right)_{MC}}$ most model and experiment systematic cancels

SuperK (Water Cerenkov tank)

H.Sobel Neutrino 2000 Y.Susuki Vietnam 2000

Sub-GeV events

Multi-GeV events

$$R = 0.652 \pm 0.019 \pm 0.051$$

$$0.668 \pm 0.034 \pm 0.079$$

Soudan-2 (tracking calorimeter)

$$R = 0.68 \pm 0.11 \pm 0.06$$

T.Mann Neutrino 2000

Macro (tracking calorimeter)

$$R = 0.731 \pm 0.028 \pm 0.044$$

B.Barrish Neutrino 2000

Is the ν_{μ} deficit due to $\nu_{\mu} \rightarrow \nu_{\chi}$ oscillation?

What is $v_x ? v_e ? v_\tau ? v_s ?$

Not just rates, but L and E dependence of rates needed to confirm oscillation

SuperK L(θ) and E dependence of rates

— MC no oscillation

+ data

Deficit depends on L and E

 $\begin{array}{ll} \mbox{Up-going} & \mbox{Down-going} \\ \mbox{cos } \theta = -1 & \mbox{cos } \theta = 1 \\ \mbox{L=13000km} & \mbox{L=15km} \end{array}$

Electrons

45 44 42 9 42 44 44 44

FC+PC events E > 1.33 GeV

SuperK

Signal region

Best fit

$$\sin^2 2\theta = 1$$
 (full mixing)

$$\Delta \mathbf{m}^2 = 3.2 \times 10^{-3} \, eV^2$$

Macro

$$\sin^2 2\theta = 1$$

$$\Delta m^2 \approx 2.5 \times 10^{-3} \, eV^2$$

Soudan 2

$$\sin^2 2\theta = 0.9$$

$$\Delta \text{m}^2 \approx 7.9 \times 10^{-3} \, eV^2$$

SuperK checks of the oscillation hypothesis $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Angular distribution

SuperK checks of the oscillation hypothesis $\nu_{\mu} \leftrightarrow \nu_{\tau}$

Angular distribution upward going v_{μ} events

- MC best fit
 HC no oscillation
 data

higher energy

lower energy MC best fit
MC no oscillation
data

$$\nu_{\mu} \leftrightarrow \nu_{\tau}$$
 or $\nu_{\mu} \leftrightarrow \nu_{s}$ oscillation?

Discrimination based on L dependence of the matter effect in Earth

$$\nu_{\mu} \leftrightarrow \nu_{s}$$
 excluded at 99% C.L.

$$\nu_{\mu} \leftrightarrow \nu_{\tau}$$
 or $\nu_{\mu} \leftrightarrow \nu_{e}$ oscillation?

- Data is compatible with a some $v_u v_e$ mixing
- $v_u v_e$ mixing must be small:
 - all v_e data agree with model predictions without oscillation
 - large $v_u \rightarrow v_e$ affect v_e data significantly
- Strong restriction from reactor experiments

$\nu_{\mu} \leftrightarrow \nu_{\tau}$ or $\nu_{\mu} \leftrightarrow \nu_{s}$ oscillation?

Discrimination based on L (or θ) dependence of the matter effect in Earth

Matter has no effect on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillation: same σ_{NC}

Matter effects suppress $\nu_s \leftrightarrow \nu_\mu$ oscillation and

suppression increases with E (not trivial!)

Suppression increases with amount L of matter traversed (θ)

$$\begin{array}{ccc}
 & \nu_{\mu} \leftrightarrow \nu_{s} \\
 & -\nu_{\mu} \leftrightarrow \nu_{\tau} \\
 & + \text{data}
\end{array}$$

 $\nu_{\mu} \leftrightarrow \nu_{s}$ excluded at 99% C.L.

CHOOZ Nuclear Reactor Long Base Line (1 km) experiment

Absolute E_{e+} spectrum at L=1km

Calculated and measured \overline{V}_e flux and
energy spectra at L=0
agree to ~ 2% (Bugey 1995)

Signal: Inverse n β decay

$$\overline{\nu}_{\rm e} + p \rightarrow e^+ n$$

$$< E_{e^+} > \approx 3 \quad MeV$$

$$L/E \approx 10^{-3}$$

 $R = \frac{E_{e^+} \text{ spectrum measured}}{E_{e^+} \text{ spectrum expected if no oscillation}}$

$$R = 1.010 \pm 0.028 \text{ (stat)} \pm 0.027 \text{ (syst)}$$

No $\overline{\nu}_e \leftrightarrow \overline{\nu}_x$ oscillation signal

Is $\nu_{\mu} \leftrightarrow \nu_{e}$ oscillation in atmospheric neutrinos fully excluded by CHOOZ/PaloVerde negative result?

3-family mass hierarchy model (Sun + Atmospheric signals)

 $\Delta m^2 \approx 3.5 \times 10^{-3} \, eV^2$: atmospheric

 $\delta m^2 < 10^{-5} eV^2 \qquad : solar$

Space for small $\nu_{\mu} \leftrightarrow \nu_{e}$ mixing

Summary of oscillation signals

3-family mass hierarchy model

$$\Delta m^2 \approx 1.5 - 5.0 \times 10^{-3} \, eV^2$$
 :atmospheric + negative $\bar{\nu}_e \leftrightarrow \bar{\nu}_x$: reactor

$$\delta m^2 < 10^{-5} \, eV^2$$
 $v_e \leftrightarrow v_{active}$:solar full mixing

LSND
$$\overline{\nu}_{\mu} \leftrightarrow \overline{\nu}_{e}$$
 at small mixing $\sin^{2} 2\theta \approx 10^{-2} - 10^{-3}$

large
$$\Delta m^2 \approx 0.1 - 1eV^2$$

requires 4 eigenstates and a v_s neutrino

e.g.
$$\underbrace{m_1^2 < m_2}_{\Delta m_{2SND}} \underbrace{\Delta m_{atm}^2}_{\Delta m_{atm}^2}$$

How to probe/improve the atmospheric neutrino signal?

Atmospheric neutrinos - project

MONOLITH in Gran Sasso underground laboratory: More precision on E and θ , thus L being submitted, to start in 2005

Long Base Line accelerator neutrinos - running

 $\begin{array}{l} \underline{K2K} \hbox{: } \hbox{KEK to Kamioka mine: $L=250$ km} \\ &<E>=1.4$ GeV} \\ &\Delta m^2=5.6\;10^{-3}\;eV^2 \\ &v_{\mu}\;disappearance\;experiment \\ &v_{\mu}\;flux\;Near/Far\;(Super\;Kamiokande)\;detectors \\ &1\;year\;data\;taking\;:expects\;29.3\pm3.4\;events\\ &sees\;17 \\ &Compatible\;with\;atmospheric\;neutrino\;signal\;2-sigma\;incompatibility\;with\;no\;oscillation\;Statistics\;still\;small \\ \end{array}$

Long Base Line accelerator neutrinos - approved, in preparation

MINOS: Fermilab to Soudan mine: L=730 km <E>=2 GeV tuneable for aimed Δm^2 ν_{μ} disappearance experiment ν_{μ} flux Near/Far detectors ν_{μ} Energy spectrum distortion Near/Far detectors $CC \nu_{\mu} / NC$

Data taking to start in fall 2003

Long Base Line accelerator neutrinos - submitted

OPERA: CERN to Gran Sasso underground laboratory

ICANOES CERN to Gran Sasso underground laboratory ???

Belgium

IIHE(ULB-VUB) Brussels

China

IHEP Beijing, Shandong

CERN

France

IPLN Lyon, LAL Orsay, LAPP Annecy, Strasbourg

Germany

Berlin, Hagen, Hamburg, Münster, Rostock

Israel

Technion Haifa

Italy

Bari, LNF Frascati, Naples, Padova, Rome, Salerno

Japan

Aichi, Toho, Kobe, Nagoya, Utsunomiya

Russia

ITEP Moscow

Switzerland

Bern

Turkey

METU Ankara

The OPERA Long Base Line Neutrino Oscillation Project

~ 120 physicists

Physics Motivation

Confirm unambiguously $\nu_{\mu} \rightarrow \nu_{\tau}~$ oscillation explanation to atmospheric ν_{μ} deficit

How?

Direct observation of CC ν_{τ} +N \rightarrow τ^{-} + X interactions Identified τ^{-} track through 1-prong decay topologies

$$\tau^- \rightarrow e^- \nu_{\tau} \overline{\nu}_{e}$$
 B.R. 17.8%

$$\tau^- \to \mu^- \nu_\tau \overline{\nu}_\mu$$
 B.R. 17.4%

$$\tau^- \rightarrow h^- \nu_{\tau} (n \pi^{\theta})$$
 B.R. 49.5%

Requirements

High sensitivity in 90% C.L. parameter space of SuperK

$$1.5 \times 10^{-3} \le \Delta m^2 \le 5.0 \times 10^{-3} \, eV^2$$
 at full mixing

How?

CERN to Gran Sasso Neutrino Beam

Long Base Line experiment

CERN CNGS new ν_{μ} beam points to OPERA detector in LNGS underground laboratory @ 730 km from CERN under Gran Sasso 3800 w.e.m. (1400m)

$$\frac{\langle E_{\nu} \rangle = 17 GeV}{L = 730 km} \rightarrow \text{access to small } \Delta m^2$$

Prompt ν_{τ} free beam

cosmic muons fluence ~ 1 m⁻² h⁻¹

How?

High resolution Emulsion chambers (ECC) massive target (2kt)

Why High resolution? $\langle \tau^- \text{ decay length} \rangle \approx 0.5 mm$

Why massive? expected v_{μ} event rate : 30 / day / 2kt

CHORUS @ CERN: 700 kg plain emulsion target sees charm decays

2 kt plain emulsion : ∞ cost prohibitive

DONUT @ Fermilab: ECC (Fe-emulsion tracker sandwiches)

v_{τ} discovery

"On-line" event analysis

- Segmented ECC target ("bricks) + Electronics detector
- Remove, process and analyse daily ~40 bricks identified to contain~30 events

DONUT V_{τ} event

Instrumented & segmented target

OPERA detector **3 Super-Modules**

Target: 24 planar modules - 652 t

Module: Wall segmented in ECC bricks

H-V Target tracker

Wall: $6.75 \times 6.75 \text{ m}^2 \times 7.5 \text{ cm}$

3264 bricks

Brick: 5" × 4" × 7.5 cm

56 cells

 $10 X_0 - 8.3 kg$

Cell: 5" × 4" × 1.3 mm

1 mm Pb layer

0.3 mm emulsion tracker

Tracker: 2 planes: H & V

256 7 m scintillator strips

Strip: $2.6 \times 1 \text{ cm}^2 \times 7 \text{ m}$

light collected by WLS fibres

read-out at both ends

by 64-channel PMT

8 tubes / plane

OPERA ECC brick

235 000 bricks - 1.96 kt

Full automatization of Brick assembly, packing Wall construction Removal of bricks fired by events

Role 1 of target trackers: identify event brick

Target structure design:

Brick size

large: easier to identify small: less dead target

 \otimes

High scanning power + Low cosmic/beam background allows coarse tracking

Tracker resolution identify bricks efficiently

Largest target transverse dimensions

Brick removing strategy

Role 2 of target trackers + ECC : Hadron shower calorimetry

Kinematics analysis of v_{τ} candidates

$$\frac{\Delta E}{E} = \frac{0.65}{\sqrt{E[GeV]}} + 0.16$$

OPERA muon spectrometers

- -identify, measure p and charge of muons
- -tag V_{μ} CC event
- -kinematics analysis of V_{τ} candidates
- -reduce the $C \rightarrow \mu^+$ background
- + target calo: measure E_{ν} spectrum
- 1.55 T Dipole magnet

2 Fe walls: 12 Fe plates + 11 RPC instrumented with RPC chambers H-V 3.5 cm strips

3 external high resolution trackers 2-plane 3-layer 35 mm drift tubes overall $\sigma_x = 0.5$ mm

Alignment is not a small issue

no beam!

no cosmic!

$$\frac{\sigma_p}{p}$$
 < 25% for p < 25GeV/ c
Wrong charge < 0.5 $\frac{\sigma_p}{\sigma_0}$

More on the emulsion, ECC and automatic scanning see K.Niwa's talk

in addition to be a high resolution target, $10 X_0$ bricks of ECC allow to:

- identify electron by multiple scattering and shower analysis
- measure electron energy by counting track segments in shower
- detect photons
- measure hadron and muon momentum by multiple scattering
- identify muon by comparing p from multiple scattering and E from range

CNGS Beam

$$E(GeV) = \frac{2L [= 730km]}{2.47 \Delta m^2 [= 3.2 \times 10^{-3} \, eV^2]} \approx 2 \, GeV < E_{thresh}(v_\tau \to \tau \text{ production})$$

Spectrum optimized for ν_{τ} production and detection

$$\Phi_{\nu_{\mu}}(E_{\nu}) \otimes P_{osc}^{\nu_{\mu} \to \nu_{\tau}}(E_{\nu} \mid L = 730 \, \text{km}, \, \sin^2 2\theta_{\mu\tau} = 1, \, \Delta m^2 = 3.2 \times 10^{-3} \, \text{eV}^2) \otimes \sigma_{\nu_{\tau}}(E_{\nu}) \otimes \varepsilon_{\nu_{\tau}}(E_{\nu})$$

$$\langle E_{\nu} \rangle = 17 GeV$$

4.5 × 10¹⁹ p.o.t./ yr

- $\Rightarrow 30 v_{\mu}$ interactions / day in a 2 kt detector (OPERA)
- \Rightarrow 50 v_{τ} interactions / yr for $\Delta m^2 = 3.2 \times 10^{-3} eV^2$
- \Rightarrow 250 ν_{τ} interactions in 5 years of run

number v_{τ} interactions $\div (\Delta m^2)^2$

Search for v_{τ} candidates : $\tau \rightarrow e^{\tau}, \mu^{\tau}, h^{\tau}(\pi^{\tau}, \rho^{\tau})$

"Long" decays (~ 40 % of τ)

"Short" decays ($\sim 60 \%$ of τ)

Search for a "kink" $\theta_{kink} > 20 \text{ mrad}$ $\epsilon_{kink} \approx 90\%$

Search for a large impact parameter At least 2^{nd} high p track IP > 5-20 μ m (depends of event depth) $\epsilon_{2t} \vartheta \epsilon_{IP} \approx 66\% \vartheta 45\% = 30\%$

Total $\varepsilon \approx 54\%$ very conservative

Kinematics selection of v_{τ} candidates in view of background reduction

High p, high pT reject low E scatters π-,K- decays h- scatters

Select isolated houtside H shower

Monte-Carlo estimate of background

	$ au^- ightarrow e^-$	$ au^- ightarrow \mu^-$	$ au^- o h^-$	Total
charm production	0.162	0.028	0.140	0.330
$\nu_e^{} { m CC}$ and π^0	0.006			0.006
large μ^- scatter		0.100		0.100
h^- interaction			0.100	0.100
Total	0.168	0.128	0.240	0.530

The background is given in events for 2. $10^4~\nu_\mu$ DIS CC expected in 5 years data taking

 $2.25 10^{20} \text{ p.o.t.}$

known to 50% test measurements in progress

Signal 5-year run

Events for maximal mixing and 5 years running					
τ decay	Δm^2	Δm^2 (in 10^{-3} eV ²)			
	1.5	3.2	5.0		
e	1.7	7.7	18.5	0.19	
μ	1.3	5.7	13.8	0.13	
h	1.1	4.9	11.8	0.25	
Total	4.1	18.3	44.1	0.57	

number v_{τ} interactions ÷ $(\Delta m^2)^2$

Discovery potential 5-year run

Probability - in equivalent # of σ - that background fakes signal

> 5 events is a "DISCOVERY" at $\geq 4 \sigma$

 $\Delta m^2 = 1.8 \times 10^{-3} \, eV^2$ and 5 years of run

SuperK @ 90% C.L.: $1.5 \times 10^{-3} \le \Delta m^2 \le 5.0 \times 10^{-3} eV^2$

Sensitivity 5-year run

average 90 % CL upper limit for a large # exp.ts in the absence of a true signal

$$(a) \sin^2(2\theta) = 1$$

 $\Delta m^2 (eV^2) < 1.2 \ 10^{-3} \ eV^2$

Constraint on oscillation parameters

Number of events $\div \sin^2 2\theta \times (\Delta m^2)^2$ for small Δm^2

Example in case observed number of events = expected from SK best fit $\Delta m^2 = 3.2 \cdot 10^{-3} \text{ eV}^2$

3.2 10⁻³

 $\sin^2 2\theta$

Status - schedule

CNGS beam

- Construction approved December 1999
- Beam for physics May 2005

OPERA detector

- Proposal July 2000
- Presentation to SPSC on September 5, 2000 Officious green light
- Presentation to LNGSSC on September 11, 200
- Hope for approval end 2000
- Ready to take data in May 2005

 Because of modular structure, need not be fully completed when beam arrives.