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The Standard Model neutrino

• The electron-neutrino νe is the
massless, 
chargeless, 
colourless,
spin 1/2, 
partner of the electron in the left handed SU(2) × U(1) lepton doublet 

• Neutrinos also exist in 3 families like the other fermions 
(measured at LEP from the width of the Z0; why? why 3?) 

• The lepton numbers Le , Lµ , Lτ are conserved independently
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 Only  and  have  CC and NC weak interactions  
   (P conservation is fully violated)

  If they exist,  and  are sterile
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What if neutrinos have (even tiny) mass
Dirac or Majorana neutrinos?
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Limits on the neutrino masses: 
1/ Direct measurements from decay kinematics
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Limits on the neutrino masses: 
2/ Big Bang cosmology

( )  At 
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Limits on the neutrino masses: 
3/ Supernovae SN1987A

• February 23, 1987, 7h33 UT, 23 neutrino interactions in 3 underground experiments
(Kamiokande, Japan; IMB, Ohio;  Baksan, Caucase) in 12.3 s time gate

• SN1987A: death of Sanduleak in LMC at 150 000 ly
SN-II models: 99% of ~2. 1046 J released  → ~1058 ν with <Eν>=10 MeV

after 150 000 y : 10s flash of ~4. 1043 ν cross the Earth

• From measured and model energy spectrum
model emission time dispersion
measured arrival time dispersion

Confirmation of the SN-II models
25

e
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Limit on the neutrino masses: 
4/ 0νββ decay experiments

 The nuclear 0  decay experiment is THE  spin-flip experiment
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Massive neutrinos: 
Mixing & Neutrino oscillations
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Straightforward extension to more than 3 neutrinos families, e.g. sterile neutrinos

Oscillation cannot distinguish Dirac from Majorana neutrinos

B.Pontecorvo
1957
B.Pontecorvo, V.N. Grimov
1967



Propagation phase
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Oscillation probability (in practical units)
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All mixings small : effective 2-family approximation



Strong mass hierarchy : effective 2-family approximation
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oscillation in phase (2-family like)
from source composition          from first process

Example of 2-family approximation: large mixing and strong mass hierarchy

oscillation damping for large ∆m2

dispersion and resolution in L/E 2
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Matter effect on neutrino oscillations
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 Propagation phase in matter for weakly interacting particles
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Oscillation can be enhanced by matter and is maximum for
given electron density  ( | , )  where mixing is full
even if mixing in vacuum is extremel

If neutri
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Solar neutrino oscillation experiments

Firsts experimental hints of neutrinos oscillation
dates back from 1968

The solar neutrino deficit problem 



Water Cerenkov

High E threshold
Measure E, θ, t
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Contradiction  with  strong correlation 
No astrophysical explanation
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A Crude solution
 bound by Luminosity
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                not well known
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- Total flux too low by factor 0.3-0.5 in all 6 experiments

- E spectrum distortion: 
SuperK and SSM spectra agree (En >6.5 MeV): 

- Seasonal effects: 
Effect of Sun-Earth distance variation (besides 1/L2):
SuperK flux time dependence agrees with 1/L 2(t)

- Day/Night effect: matter effect inside  Earth ?
SuperK flux time dependence compatible with no effect

νe→ νx (νµ, ντ, νs) Oscillation Signals?
Inside the Sun? Between Sun-Earth?

0 013
0 012

D-N 0 034 0 022
(D+N)/2

.

.. . +
−= − ±

χ2/NDF = 13.7/17

Eν

Flux deficit is the only smoking gun
Y.Suzuki  Neutrino 2000
Y.Susuki Vietnam 2000



Global fit for  (  or )e active µ τν ν ν ν→ Allowed by SK
All measurements 

2tan θ

@ 95% C.L.

Allowed by Ga+Cl+SK
Flux measurements only

Oscillation in Sun matter

Oscillation in vacuum

Excluded by SK
Day/Night spectrum only

Y.Suzuki  Neutrino 2000
Y.Susuki Vietnam 2000 Note



Global fit for  (  or )e active µ τν ν ν ν→

2tan θ

@ 95% C.L.

Y.Suzuki  Neutrino 2000
Y.Susuki Vietnam 2000
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Solar neutrino oscillation: Summary and Future

The solar neutrino deficit can be explained by νe oscillation to
active neutrinos

@ 95% C.L.  2 sets of parameters are favoured by combining 
all data

@ 95% C.L. oscillation to sterile neutrinos is disfavoured

SNO: measures independently the CC and NC solar event rates
(NC rate unaffected by oscillation between active neutrinos)

KAMLAND, BOREXINO: Very LBL reactors experiments (L>100 km)
(from 2001)              reach 
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Neutrino Oscillation Experiments at Accelerators

Motivation

Search for  neutrinos with masses of cosmological relevance:
“Hot dark matter” candidates with mν > 1 eV
with sensitivity  to Posc > 10-3 -10-4 (given previous results)

mν > S∆m2  >  1 eV

High sensitivity = low intrinsic background = well know source
Large ∆m2 =  high energy
High sensitivity + Large ∆m2 = accelerator experiment



Neutrino Oscillation Experiments at
High Energy Accelerators

CHORUS and NOMAD short baseline experiments

Search for νµ−ντ oscillation
ντ appearance in ντ free (~10-6) νµ beam
at the CERN SPS Wide Band Neutrino Beam

Sensitivity Posc(νµ−ντ) > 10-4



Same beam, Complementary concepts

No µ in final state

NOMAD: ντ signal extraction technique: excess of events in kinematics box

“Kink”

ττ= 2.9  10−13σ
< βγcττ > ≈ 1.5 mm

CHORUS: Observation of the τ-lepton track produced in CC ντ interactions
in 770 kg nuclear emulsion target : “kink” topology

See talk by K.Niwa



Results 
 expects 55.2 5.2 background events
 observes 58
 would have seen 14937 , 

   would all  have oscillated

NOMAD:
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 expects 1.2 background events
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 would have seen 10018 , 

   would all  have oscillated

 CHORUS is able to detect events:
  relaxed selection cuts:
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round expected
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M. Mezzetto Neutrino 2000
P.Astier at al. CERN-EP-2000-049)

E.Eskut at al. CERN-EP-2000-0??)
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 800 MeV p beam dump
 2ndry ,  stopped in dump
 mostly , ,  produced

   in ,  decays at rest
   below 53 MeV
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expects    12.29 0.69  background events
observes  11

KARMEN-II

eν±

expects    50.3  background events
observ

all measurememts well fitt
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excess      32.7 9.2
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e
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±
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Results

Final word by MiniBOONE at Fermilab in 2002(3)

LSND: G.Mills  Neutrino 2000
KARMEN2: K.Eitel



K. Eitel hep-ex-990906
and New J. Phys. 2  
(2000)1

Preliminary joined 
KARMEN2-LSND analysis

Joined likelihoodJoined likelihood

3 “sensible” common
favoured regions

90%
99%
LSND alone
KARMEN2,
NOMAD,BUGEY
excluded

Statistical analysis of small event numbers
is very touchy: Bayesian v.z. frequentist
variations
CERN 2000-005 Yellow report

The result of two analysis is NOT the overlap
of an exclusion contour on a signal contour
K. Eitel hep-ex-990906  and 

New J. Phys. 2(2000)1



Atmospheric Neutrinos Oscillation Experiments

Beautiful atmospheric 
neutrinos beam line
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ε+

p
<E> ~ 1 GeV

Wide L/E range
E measured
L measured from θ
How precise are the flux
MC predictions?



Rates

SuperK (Water Cerenkov tank)

( )
( )

     most model and experiment systematic cancelse Data
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          Sub-GeV events                        Multi-GeV e
. . .              

vents
   . . .R 0 652 0 019 0 051 0 668 0 034 0 079= ± ± ± ±

Soudan-2 (tracking calorimeter)

. . .R 0 68 0 11 0 06= ± ±

Macro (tracking calorimeter)
. . .R 0 731 0 028 0 044= ± ±

Is the  deficit due to  oscillation?

What is ?   ?  ?  ?

Not just rates, but L and E dependence of rates needed to confirm oscillation 

X

X e s

µ µ

τ

ν ν ν

ν ν ν ν

→

T.Mann Neutrino 2000

B.Barrish Neutrino 2000

H.Sobel Neutrino 2000
Y.Susuki Vietnam 2000



Up-going      Down-going
cos θ = -1 cos θ = 1 
L=13000km      L=15km

SuperK
L(θ) and E dependence
of rates

MC no oscillation

data

Deficit depends on
L and E



SuperK

Signal region

2

Best fit
sin    (full mixing)

m .

2

3 2

2 1
3 2 10 eV

θ
∆ −

=

= ×

Macro

2

sin  
m .

2

3 2

2 1
2 5 10 eV

θ
∆ −

=

≈ ×

Soudan 2

2

sin .  
m .

2

3 2

2 0 9
7 9 10 eV

θ
∆ −

=

≈ ×

µ τν ν↔

5  10-3

1.5  10-3

10-3

10-4

10-2

68 % C.L.

∆m2

(eV2)

sin2 2 θ

90 % C.L.
99 % C.L.

• 3.2  10-3



MC no oscillation
data

MC best fit

SuperK checks of the oscillation hypothesis µ τν ν↔

e-like µ-like

Angular distribution

Multi GeV

Sub GeV



SuperK checks of the oscillation hypothesis µ τν ν↔

Angular distribution
upward going νµ events

MC no oscillation
data

MC best fit

higher
energy

lower
energy

e-like
µ-like

L/E distribution

MC no oscillation
data

MC best fit



 or  oscillation?eµ τ µν ν ν ν↔ ↔

• Data is compatible with a some νµ− νe mixing

• νµ− νe mixing must be small:
- all νe data agree with model predictions without oscillation
- large νµ→ νe affect νe data significantly

• Strong restriction from reactor experiments

 or oscillation?sµ τ µν ν ν ν↔ ↔

Discrimination based on L dependence of the matter effect in Earth

 excluded at 99% C.L.sµν ν↔



 or oscillation?sµ τ µν ν ν ν↔ ↔
Discrimination based on L (or θ) dependence of the matter effect in Earth

Matter has no effect on  oscillation: same 

Matter effects   oscillation and 

              suppression increases with E (not trivial!)
Suppression increases with

sup

 amount  of matter 

press s

NC

L

µ τ

µ

ν ν σ

ν ν

↔

↔

traversed ( )θ

 excluded at 99% C.L.sµν ν↔

data

 sµν ν↔
 µ τν ν↔

cos θ-1 0

up-going µ from up-going νµ 
interacting in rock 
high energy events

L=500kmL=13000km



R 1.010 0.028 (stat) 0.027 (syst)= ± ±
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E  spectrum measured
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E  spectrum expected if no oscillation
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Absolute Ee+ spectrum at 
L=1km

Calculated and measured 
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energy spectra at L=0

agree to ~ 2% (Bugey 1995)
eν

CHOOZ Nuclear Reactor Long 
Base Line (1 km) experiment

Signal: Inverse n β decay
nep +→+eν
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Is  oscillation in atmospheric neutrinos

fully excluded by CHOOZ/PaloVerde negative result?
eµν ν↔

3-family mass hierarchy model (Sun + Atmospheric signals)
  : atmospheric

           : sol
.
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SK 90% C.L.
SK 99% C.L.
CHOOZ excluded 90% C.L.

Space for 
small  mixingeµν ν↔
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Atmospheric neutrinos - project

MONOLITH in Gran Sasso underground laboratory: 
More precision on E and θ, thus L
being submitted, to start in2005

Long Base Line accelerator neutrinos - running

K2K: KEK to Kamioka mine: L = 250 km
<E> = 1.4 GeV
∆m2 = 5.6 10-3 eV2

νµ disappearance experiment
νµ flux Near/Far (Super Kamiokande) detectors
1 year data taking   : expects 29.3 ± 3.4 events

sees       17
Compatible with atmospheric neutrino signal
2-sigma incompatibility with no oscillation
Statistics still small

How to probe/improve the atmospheric neutrino signal?



Long Base Line accelerator neutrinos - approved, in preparation

MINOS: Fermilab to Soudan mine: L = 730 km
<E> = 2 GeV tuneable for aimed ∆m2

νµ disappearance experiment
νµ flux Near/Far detectors
νµ Energy spectrum distortion Near/Far detectors
CC νµ / NC

Data taking to start in fall 2003

Long Base Line accelerator neutrinos - submitted

OPERA: CERN to Gran Sasso underground laboratory

ICANOE: CERN to Gran Sasso underground laboratory  ???
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Physics Motivation

Confirm unambiguously νµ → ντ oscillation explanation to atmospheric νµ
deficit 

How?

Direct observation of CC ντ +N → τ- + X interactions 
Identified τ- track through 1-prong decay topologies

Requirements
High sensitivity in 90% C.L. parameter space of SuperK

. .  at full mixing3 2 3 21 5 10 m 5 0 10 eV∆− −× ≤ ≤ ×
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Long Base Line experiment

How?

CERN CNGS new νµ beam points to
OPERA detector in LNGS underground laboratory
@ 730 km from CERN
under Gran Sasso 3800 w.e.m. (1400m)

cosmic muons fluence ~ 1 m-2 h-1

access to small 

Prompt  free beam  

2E 17GeV
m

L 730km
ν

τ

∆

ν

=
→

=



High resolution Emulsion chambers (ECC) massive target (2kt)

Why High resolution? 

Why massive?  expected νµ event rate : 30 / day / 2kt 

CHORUS @ CERN: 700 kg plain emulsion target sees charm decays

2 kt plain emulsion : ∞ cost prohibitive

DONUT @ Fermilab: ECC (Fe-emulsion tracker sandwiches)

ντ discovery

 decay length .0 5mmτ − ≈

How?

“On-line” event analysis
- Segmented ECC target (“bricks) + Electronics detector
- Remove, process and analyse daily ~40 bricks identified to contain~30 events



DONUT ντ event

τνµν+µ→
τν+τ→

+γ→

+−
µ µ→ν

sD

*
s NDN

CHORUS



OPERA  detector
3 Super-Modules

Instrumented & segmented target

Muon spectrometer

Target: 24 planar modules - 652 t
Module: Wall segmented in ECC bricks

H-V Target tracker
Wall: 6.75 × 6.75  m2 × 7.5 cm                

3264 bricks
Brick: 5” × 4” × 7.5 cm 

56 cells                             
10 X0 - 8.3 kg

Cell: 5” × 4” × 1.3 mm
1 mm Pb layer
0.3 mm emulsion tracker

Tracker: 2 planes: H & V
256  7 m  scintillator strips

Strip:   2.6 × 1 cm2 × 7 m 
light collected by WLS fibres
read-out  at both ends 
by 64-channel PMT
8 tubes / plane



OPERA ECC brick

235 000 bricks - 1.96 kt  

Full automatization of
Brick assembly, packing 
Wall construction
Removal of bricks fired by events  



OPERA Scintillator strip
target trackers

16 strips

6.7 m

PMT

W
LS

 fi
be

rs
4

=
64 strips

PMT

cables

PMT

# p.e.

distance to PMT (m)

Light read at both WLS fibre ends
Prob (0 p.e.) = 0.05%



Role 1 of target trackers: identify event brick

ν

Target structure design:

Brick size 
large: easier to identify
small: less dead target

⊗
High scanning power +
Low cosmic/beam background

allows  coarse tracking
⊗

Tracker resolution
identify bricks efficiently
⊗

Largest target transverse 
dimensions

⊗
Brick removing strategy 

Role 2 of target trackers + ECC : Hadron shower calorimetry

Kinematics analysis of ντ candidates
[ ]
. .E 0 65 0 16

E E GeV
∆

= +



OPERA muon spectrometers

1.55 T Dipole magnet
2 Fe walls : 12 Fe plates + 11 RPC
instrumented with RPC chambers 

H-V 3.5 cm strips
3 external high resolution trackers

2-plane 3-layer 35 mm drift tubes 
overall σx = 0.5mm

Alignment is not a small issue
no beam!
no cosmic!

x

z

%   for /

Wrong charge < 0.5 %

p 25 p 25GeV c
p

σ
< <

-identify, measure p and charge of muons
-tag νµ CC  event 

-kinematics analysis of ντ candidates
-reduce the C→ µ + background
- + target calo: measure Eν spectrum

Target

Spectrometer

Magnets Fe plates + RPC

0.5 
m

0.5 
m

1 m 

High precision 
drift tubes trackers 

8 x 8.75 m
2



More on the emulsion, ECC and automatic scanning
see K.Niwa’s talk

in addition to be a high resolution target, 10 X0 bricks of ECC allow to:

- identify electron by multiple scattering and shower analysis

- measure electron energy by counting track segments in shower

- detect photons

- measure hadron and muon momentum by multiple scattering

- identify muon by comparing p from multiple scattering
and E from range



CNGS Beam
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Search for ντ candidates : τ →e-,µ-,h-(π-,ρ-)

Search for a “kink”
θkink > 20 mrad
ε kink ≈ 90%

Search for a large impact parameter
At least 2nd high p track
IP > 5-20 µm (depends of event depth)
ε 2t ε IP ≈ 66% 45% = 30%

Total ε ≈ 54% very conservative

Not to scale

ν

“Long ” decays  ( ~ 40 % of τ )

θkink

Pb
E
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ul
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on
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ν

Pb
E
m
ul
si
onI.P

.

“Short ” decays  ( ~ 60 % of τ )
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Kinematics selection of ντ candidates
in view of background reduction

ν τ-

H

Φ
h-

hτ − −→

sinmis g
TP

pT 

τ-

H

θ
p e- ,µ- ,h-

-, , ( , )e hτ µ π ρ− − − − −→

ν

High p, high pT reject 
low E scatters
π-,K- decays
h- scatters

Select isolated h-

outside H shower



Monte-Carlo estimate of background

0

Total
charm production 0.162 0.028 0.140 0.330

CC and 0.006 0.006
large  scatter 0.100

 interactio
0.100

0.10n 0.100

Total 0.168 0.128 0.24

0

0 0.530

e

e h

h

τ τ µ τ

ν π
µ

− − − − − −

−

−

→ → →

The background is given in events for 2. 104  νµ DIS CC

expected in 5 years data taking
2.25  1020 p.o.t. known to 50%

test measurements
in progress



Signal
5-year run

Events for maximal mixing and 5 years runningEvents for maximal mixing and 5 years running
ττ decay                decay                ∆∆mm2  2  (in 10(in 10--3 3 eVeV2 2 )           )           BckgdBckgd

1.5       1.5       3.23.2 5.0  5.0  
e                      1.7       e                      1.7       7.77.7 18.5            0.1918.5            0.19
µµ 1.3       1.3       5.75.7 13.8            0.1313.8            0.13
h                      1.1       h                      1.1       4.94.9 11.8            0.2511.8            0.25

Total                     4.1     Total                     4.1     18.318.3 44.1            44.1            0.570.57
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Discovery potential  5-year run
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average 90 % CL upper limit for a large  # exp.ts 

in the absence of a true signal

Sensitivity 5-year run

@ sin2 (2θ) = 1 

∆m2 (eV2 ) < 1.2 10-3 eV2
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ν 2000
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SUPER-K 90%CL

ν 2000

OPERA
OPERA

90 % CL in 5 years

Example in case observed
number of events = expected
from SK best fit ∆m2 = 3.2  10-3 eV2

3.2  10-3

Constraint on oscillation parameters

( )Number of events sin  for small 
22 2 22 m mθ ∆ ∆÷ ×



Status - schedule

CNGS beam
- Construction approved December 1999
- Beam for physics May 2005

OPERA detector
- Proposal July 2000
- Presentation to SPSC on September 5, 2000
Officious green light 

- Presentation to LNGSSC on September 11, 200
- Hope for approval end 2000
- Ready to take data in May 2005
Because of modular structure, need not be fully completed
when beam arrives.


