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Preface

Since X-rays were discovered by Wilhelm Conrad Röntgen in 1895, various di-
agnostic tools have been developed for non-surgically looking inside the body.
Today, doctors and researcher have a number of imaging modalities at their dis-
posal such as X-ray computed tomography (CT), Magnetic resonance imaging
(MRI), ultrasound (US), Diffuse Optical Tomography, Single Photon Emission
Computed Tomography (SPECT) and Positron Emission Tomography (PET).
The image formation in all these modalities have one thing in common: they
need some form of energy interacting with the human body. The source of en-
ergy can be either internal or external. Sometimes the energy source is naturally
present, other times it needs to be externally stimulated or administered. Figure
1 shows a classification of the most common modalities as a function of the energy
source.

In diagnostic medicine, the imaging modalities are used to determine the cause
of a disease based on abnormalities showing up. Pathologies of diseases can be
understood as the morphological and physiological consequences of dysregulated
molecular pathways in a living being. Hence, in order to understand diseases and
try to detect them as early as possible (i.e. before the pathologies themselves are
visible or when they are still very small), it is necessary to study biological pro-
cesses on a molecular level. Ideally, a molecular imaging method is characterized
by a high sensitivity, minimal background signal and a high resolution in both the
spatial and time domain. Unfortunately, such a technology does not exist. The
imaging modalities at hand all have their strengths and weaknesses. Depending
on the problem one faces, different modalities have to be used. A comparison
of the afore mentioned modalities with regards to detectability (i.e. what is the
minimal concentration this modality can pick up) and spatial resolution is given
in figure 2. The high resolution modalities like MRI and X-ray CT are character-
ized by inferior sensitivity and are therefore of less interest for molecular imaging
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Figure 1 – Classification of the most common imaging modalities according to
their energy source.

6



 X-ray CT 

µm 10 µm 100 µm mm cm
0

-3

-6

-9

-12

 MRI

 Optical (DOT)
 PET

 SPECT

log (spatial resolution) 

lo
g 

(d
et

ec
ta

bi
lit

y)
 (

m
ol

ar
)

Figure 2 – Comparison of various imaging modalities with respect to spatial res-
olution and detectability. [62]

applications. They yield valuable structural (i.e. anatomical) and physiological
information. On the other hand, optical imaging techniques and nuclear imaging
modalities such as SPECT and PET are capable of detecting tracer concentration
in the sub-nanomolar range. The images obtained by the different modalities are
usually complementary, showing a different kind of information. As an example,
figure 3 shows images of the brain using six modalities.

The work presented in this thesis concerns the development of novel instru-
mentation for PET imaging. PET, like its sister modality SPECT, is nuclear
medicine’s version of radiology. It is based on the administration of a chemical
compound containing a radioactive isotope, also called tracer or radio pharmaceu-
tical. The substance is given to the patient orally, by injection, or by inhalation.
Once the compound has distributed itself according to the physiological processes
active in the patients body, a radiation detector is used to make projection images
of the gamma rays emitted during the decay of the agent. In other words, the ra-
diation from the isotope in tracer acts as a beacon to report on the position of the
molecule under study as it goes through a biochemical pathway. Different types of
radioactive tracers are used, depending on the illness or organ being examined. In
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Figure 3 – Brain images from six different modalities showing different kinds of
information.

the case of cancer diagnosis, for example, the radioactive tracer is often a glucose
solution labeled with fluorine-18 called FDG (Fluoro-deoxyglucose). The uptake
and metabolism of glucose in malignant cells is faster than in healthy cells because
cancerous cells divide faster and therefore use more energy. Given that FDG can
move into a cell but cannot move out again once it takes part in the biological
processes inside the cell, the distribution of the decayed radioisotopes is a good
reflection of the distribution of the cells. A PET scan can then map those areas
of the body where glucose uptake is higher than normal and identify the location
of the tumors.

Besides detecting tumors and determining where cancer has spread in the
body, PET can also be used for many other diagnostic applications such as e.g.
evaluating brain abnormalities or examining the blood flow to the heart. It is
also an important part in treating many diseases. In addition to determining the
extent of a cancer in the body, FDG scans are also useful for evaluating a patients
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response to treatment. By comparing how far the cancer extended before and
after a certain treatment, doctors can determine whether the treatment has been
effective.

Positron emission tomography is also useful as a research tool. For example,
it was used to map brain functions and study the heart. PET is now often used in
oncology research, particularly in pre-clinical testing on laboratory animal. One
advantage of PET is that researchers cannot only obtain detailed information,
they can also obtain this information at different times in the course of prolonged
experiments. This allows them to use fewer animals and minimize inter-animal
variability in their work. PET is used in many other types of research as well.
For example, to speed up the development of new drugs, the pharmacological
properties are studied by injecting labeled drugs in animals and performing PET
scans to evaluate how the drugs are metabolized and excreted. Another domain
where PET is an important research aid, is the development of disease models
and evaluating them on laboratory animals.

As a molecular imaging modality, PET images are often combined with anatom-
ical images. The first multimodality imaging device was introduced by the com-
bination of PET and CT scanners in the late 90s [7]. Although the PET-CT
combination is a valuable tool in medicine, it also has some limitations and draw-
backs:

• It does not allow simultaneous imaging of both modalities, which makes the
fusion more difficult due to possible patient movement.

• CT adds to the total radiation dose the patient is exposed to.

• CT has low contrast for soft tissue, e.g. in the abdominal region.

To overcome these limitations, a lot of recent research efforts are put into the
development of a combined PET-MRI scanner. This combination does not have
any of the mentioned drawbacks, but is technologically much more difficult to
realize.

A very important parameter in the design of PET scanners, is the accuracy
and efficiency with which the gamma photons emitted by the isotope in the tracers
can be localized by the detectors in the scanner. This ultimately determines the
resolution and the quality of the image showing the distribution of the tracers. The
goal of this thesis is to improve the performance of an upcoming detector concept
for PET. This new detector configuration replaces the commonly used pixelated
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detector approach with one based on monolithic scintillator detectors. Several
algorithms have already been evaluated to make use of the signals extracted from
this detector. However, they all require an extensive calibration procedure before
the detectors can be used. This thesis describes a novel method we developed
to employ these monolithic PET detectors without prior calibration by fitting
the detector signals to a physics-based model and extracting the parameters of
interest which are necessary to reconstruct PET images.

The first chapter introduces PET, the involved physical processes and the
consequent limitations. It also introduces most of the PET related acronyms
used. The detector technologies employed in PET are detailed in Chapter 2.
This chapter also compares the commonly used pixelated PET detector with the
monolithic ones we envisage to use. The use of monolithic PET scintillators in
prototype PET detectors has also led to the development of various algorithms
required to extract useful information from the detector signals. Chapter 3 will
give an overview of existing algorithms developed by other research groups. The
new approach we propose is described in Chapter 4. Its performance on simulated
and experimental data is shown in Chapter 5. Comparison of this method with
the others will be given in Chapter 6. Finally, the main conclusions from this
thesis are summarized in the last Chapter.

10



Chapter 1

Positron Emission Tomography

1.1 PET imaging process

The process of PET imaging (figure 1.1) starts by injecting a radio-active tracer
which contains a surplus of protons into the patent’s body. The radio-active
tracer stabilizes by the decay of a proton into a neutron. During this process, a
positron and a neutrino are emitted. The latter is not detected. Depending on its
initial kinetic energy, the positron will travel from a few tenths of a mm to a few
millimeters in the environment, loosing its kinetic energy in multiple collisions.
When it has lost most of its kinetic energy, it annihilates with an electron. The
positron and electron disappear and are converted into two nearly back-to-back
511 keV photons. These are then detected by a ring of detectors surrounding the
patient. The position of the annihilation is supposed to have occurred on the
line connecting the couple of detected 511 keV photons. This line is called a line-
of-response (LOR). By detecting many 511 keV photon pairs along all possible
LORs going through the patient, the spatial and temporal distribution of tracers
can be visualized using appropriate tomographic image reconstruction algorithms
[19, 23, 31].

The process of PET imaging consist of four steps : (1) injection and uptake of
a radio tracer, (2) emission of a 511 keV photon pair as a result of the annihila-
tion of a positron emitted by the isotope in the tracer, (3) coincidence detection
(i.e. quasi-simultaneous detection) of the emitted photon pairs and (4) tomo-
graphic image reconstruction of the radio-pharmaceutical distribution using the
information of the registered coincidences. The following sections will explain the
different steps involved in PET imaging in somewhat more detail.

11



12 CHAPTER 1. POSITRON EMISSION TOMOGRAPHY

Figure 1.1 – PET imaging consists of four steps : (1) injection and uptake of a
tracer, (2) decay of the radioisotope, followed by the emission and annihilation of
a positron, (3) coincidence detection of the 511 keV photon pairs resulting from
the positron annihilation, (4) reconstructing a 3D image using the positions of the
registered photon pairs.

1.1.1 PET Tracers

PET, in contrast to SPECT, uses positron-emitting isotopes such as 18F , 11C,
13N , 15O. These elements occur naturally in many compounds of biological in-
terest and can thus be easily incorporated in useful radio-pharmaceuticals. The
molecule onto which the radioisotope is attached, is chosen as a function of the
physiological process at interest. Four frequently used tracers are shown in table
1.1.

The disadvantage of the isotopes used in PET is that they require a cyclotron
for their production. The short half-life time of the isotopes demand that the
cyclotron should be either on-site or close by.

Radioisotope Tracer Application Half-life
18F FDG Brain function, tumors 109.8 min
15O 15O water Blood flow, brain study 2.03 min
11C Carbon monoxide Cerebral blood 20.4 min
13N 13N ammonia Heart study 9.98 min

Table 1.1 – Examples of positron emitting radionuclides and their applications,
from [65].
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1.1.2 Positron emission and annihilation

During the decay of a PET tracer, a proton p in the nucleus of the radio isotope
transforms into a neutron n by emitting a positron e+ (or β+), together with a
neutrino νe which is not detected:

p→ n+ e+ + νe (1.1)

Once a positron is emitted, its kinetic energy is rapidly reduced by multiple
Coulomb interactions, exciting and ionizing atoms on its trajectory. After travel-
ing some distance until its energy reaches thermal equilibrium with the surround-
ing medium, it combines with an electron in the process of annihilation. Typical
positron ranges vary from a few tenth of a mm to a few mm depending on their
initial kinetic energy. The distribution of their ranges is narrowly peaked but still
has a significant tail (figure 1.2). Table 1.2 gives the FWHM and FWTM of the
positron range in water for a number of PET isotopes.

Radioisotope FWHM (mm) FWTM (mm)
18F 0.102 1.03
15O 0.501 4.14
11C 0.188 1.86
13N 0.082 2.53

Table 1.2 – FWHM and FWTM of the positron range for a number of PET
isotopes in water. Data from [42].

Figure 1.2 – Positron range distribution of 18F , from [63]
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When the original positron has lost its kinetic energy, it annihilates with an
electron of the surrounding tissue and both particles are converted into two op-
posite, nearly back-to-back directed gamma photons. Due to the fact that the
positron and electron annihilate approximately in rest, the energy of the resulting
photons comes from the mass energy of the two particles, which can be computed
by Einstein’s mass-energy equivalence as:

E = mc2 = mec
2 +mpc

2 (1.2)

where me and mp are the mass of the electron and positron, c is the speed of
light. According to this equation, the released energy is 1.022 MeV. Because the
total momentum of the electron and positron at the moment of annihilation is
practically zero, the two annihilation photons fly away in opposite directions and
carry each 50% of the released energy, i.e. 511 keV (figure 1.3). The energy
falls in the gamma-ray region of the electromagnetic spectrum. This makes these
photons energetic enough to have a good chance to escape from the body but still
be detected relatively easily by the detectors in the PET scanner (see Chapter 2).

Figure 1.3 – The positron emitted during the decay of the tracers, annihilates
with an electron of the surrounding tissue after it has lost its kinetic energy. The
mass energy of the electron-positron pair is converted into two 511 keV photons
leaving the annihilation scene in opposite directions.

1.1.3 Coincidence detection

The quasi-simultaneous detection of the two 511 keV annihilation photons by a
ring of detectors surrounding the patient, is called a coincidence. We then know
that the annihilation has happened somewhere along the LOR joining the two
points where the photons were detected. Because the point of annihilation is very
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close to the point of positron emission, one usually assumes that the LOR contains
the position of the tracers that initially emitted the positron.

A certain percentage of the gamma rays that interact within the patient, either
by photo electric absorption or Compton scattering (see Appendix A). As a result,
four types of events can occur: (1) true events, (2) scattered events, (3) random
events and (4) single events (figure 1.4). A true event is where both 511 keV
photons leave the patient without any interaction and both are detected by the
ring of detectors surrounding the patient. The accuracy with which the detectors
can determine the exact arrival time of a photon is called time resolution (see
section 2.3.4). Because the time resolution of PET detectors is not perfect, the
PET coincidence electronics must foresee a time window 4t within which two
annihilation photons can be accepted. The length of the time window needed to
accept most of the true coincidences depends on the time resolution, i.e. a better
time resolution leads to shorter time windows. In current PET systems, the time
window is in the ns range, i.e. usually less than 10 ns.

Figure 1.4 – Four types of events can occur in PET : (a) True coincidence event,
(b) scattered coincidence event, (c) random coincidences event and (d) a single
event. Types (b) and (c) yield incorrect LOR information and contribute to a
relatively uniform background image that result in a loss of contrast. (d) The
single event type detects only one of annihilation photons.

If one or both of the photons undergo a Compton interaction and are scattered
in such a way that they still end up being detected, we call it a scattered event.
During the scattering process, the 511 keV photons lose part of their energy.
Hence, if the detectors in the PET scanner are capable of accurately measuring
the energy of incoming photons, the scattered photons can be rejected. In a real
system, the detectors usually employ a threshold of around 350 keV. Only if the
measured energy is above this threshold, the photon is accepted. Imposing such
a threshold also has a drawback. Because 511 keV photons impinging on the
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PET detectors don’t always deposit their full energy in the detector, they are also
regarded as scattered photons and hence discarded if they don’t cross the imposed
energy threshold. This lowers the sensitivity of the PET system. In clinical PET,
the scatter-to-true coincidence ratio ranges from 0.2 to 0.5 for brain imaging and
from 0.4 to 2 for human body imaging [16].

Random events occur when two 511 keV photons, originating from two differ-
ent annihilations (i.e. different tracer molecules) are detected as a coincidence,
i.e. within the time window 4t of the PET system. These accidental events don’t
carry any information about the tracer distribution in the patient and only add to
the background noise in the image, reducing the image contrast. The probability
of detecting random events increases when the length of the time window gets
longer. The rate of random events detected by two detectors can be expressed as
a function of the number of individual photons arriving on those two detectors
and the time window in the following way :

Rrandom = R1(1− e−R24t) (1.3)

where R1 and R2 are the rates of individual photons, also called single events,
detected by detector 1 and 2 respectively. If the average arrival time between two
single events on detector 2 is much larger than4t, then 1

R2
�4t or R2×4t� 1.

In this case equation (1.3) can be approximated as

Rrandom = R1R24t (1.4)

Because the rate of individual photons R1 and R2 hitting the two detectors
increases with the amount of tracer activity in the patient, it follow from (1.4)
that the random rate Rrandom in a PET scanner increases quadratically with the
amount of tracer administered. The true event rate increases only linear with
the amount of tracer. Hence increasing the amount of tracer will also increase
the random event ratio, i.e. the ratio of the random event rate over the true
event rate. Equation (1.4) also shows that it is vital to keep the time window
4t as small as possible to minimize random events. The minimum time window
that can be operated in a PET scanner, depends on the time resolution of the
detectors used. In actual PET scanners, the ratio of random-to-true coincidence
rates is about 0.1 to 0.2 for brain imaging [16]. The randoms can be corrected
for on a statistical basis, i.e. it is impossible to identify random events on an
individual basis but the average number of randoms between a pair of detectors
in a PET scanner can be determined. If the electronics in a PET system foresees
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a counter for each detector, the random rate between each detector pair can be
computed using equation (1.4). The method which is usually implemented to
remove the contribution of random events, is called the delayed coincidence tech-
nique. Whenever a coincidence window is opened, a second coincidence window is
opened after some delay that is much bigger than the length of the time window
itself. If a coincidence between the two detectors is detected within the delayed
time window, it must have been a random coincidence. Hence after a scan, for
each detector pair the system has measured the total number of coincidences and
an estimate of the average number of random events between those two detectors.
Subtracting the two number removes the number of random events.

Finally, it is also possible that just one of the two annihilation photons is
detected (figure 1.4 (d)), either because the second photon misses the detector or
is not detected by the detectors. These events are rejected electronically because
no second photon was detected during the length of the time window that was
opened when the first photon arrived. Hence, the single events don’t influence
the image quality but they add extra dead time to the system during which it is
not responsive to other good events.

1.1.4 Image reconstruction

The last step in the PET imaging process is the image reconstruction using the
measured coincidences. A mathematical treatment of the algorithms involved is
beyond the scope of this work, but intuitively one can see that the LORs of the
coincidences generated by a point source, intersect at that point. A mathematical
way of drawing an LOR, is called backprojecting. If an image can be considered as
a matrix of pixels, then backprojection consists of putting the number of coinci-
dences measured along a given LOR (i.e a detector pair) in all the pixels that are
intersected by that LOR (figure 1.5). If this is repeated for all possible LOR’s,
the backprojected imaged of a point source gets the shape of a 1

r distribution
around the position of the point source, where r is the distance to the point
source (figure 1.6). In other words, the backprojected image is a convolution of
the true image and a 1

r function. Deconvoluting the 1
r function from the back-

projected image, yields the real image. This deconvolution is usually done in the
spatial frequency domain by multiplying with the appropriate filter function, i.e.
the Fourier transform of the 1

r function. Hence the reconstruction algorithms is
called Filtered-BackProjection algorithm or FBP.



18 CHAPTER 1. POSITRON EMISSION TOMOGRAPHY

13

13

13

13

13

13

54

13

13

13

13

13

13

13

13

18 18 18 18 18 18 18 18 18 18 18 18 18 18

23

23

23

23

23

23

23

23

23

23

23

23

23

23

13

13

18 18

23

23

Figure 1.5 – Backprojection consists of putting the number of photons measured
along an LOR into all image pixels crossed by that LOR.

Figure 1.6 – The backprojected LORs all go through the point where the anni-
hilation photons originated. When more and more LORs are backprojected, the
image becomes a 1/r distribution.

1.2 Fundamental resolution limits of PET

When using the backprojection process during the image reconstruction, one as-
sumes that the tracers which emitted the positron lies on the LOR defined by
the two annihilation photons. There are two physical processes that make this
assumption not completely valid and hence introduce some error.
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1.2.1 Positron range

The first contribution to the resolution limit is given by the positron range, al-
ready mentioned in section 1.1.2. When a positron is emitted during the decay
of a tracer, the positron travels a distance based on its kinetic energy, and hence
the LOR actually passes through the annihilation point instead of the positron
emission point. This range degrades the spatial resolution of a PET system and
introduces some blurring into the image. For example, the positron range dis-
tribution of F-18 in water has a 0.1 mm full-width at half-maximum (FWHM)
and O-15 has 0.5 mm FWHM [22]. One way to physically reduce this effect is
using a strong magnetic field [8]. The transaxial resolution of the scanner will
be improved since the positron range is reduced in that plane (figure 1.7), while
the axial resolution is kept unaltered. This is an attractive method since a PET
scanner can be combined with MRI to have a combined structural and functional
multimodality imaging platform.

Figure 1.7 – Influence of the magnetic field on the positron range, for the ra-
dioisotope 86Y (Emax=3.15 MeV) in water, illustrated by the GEANT4 simulation
toolkit. a) 0 Tesla and b) 10 Tesla field orthogonal to the paper plan. The average
distance between the emission and annihilation point is reduced in presence of the
magnetic field. [8]
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1.2.2 Photon non-collinearity

The second fundamental physical limit on the spatial resolution in PET is the
non-collinearity of the pair 511 KeV annihilation photons, i.e the flight paths of
the two gamma rays have a small angular deviation from 180o (figure 1.8). This
is a result of the fact that at the time of annihilation, the electron is not perfectly
in rest. The residual momentum of the electron-positron system can introduce a
small deviation from the 180◦ angle between the two annihilation photons. The
distribution of the angular deviation is Gaussian with a FWHM of 0.5◦[16].

Figure 1.8 – Relationship between the acolinearity error ∆x, the scanner radius
R and the deviation from colinearity θ.

The amount of blurring introduced by the non-collinearity is given by the
shortest distance ∆x between the LOR and the annihilation point (figure 1.8) :

∆x ≈ R× θ
2

where R is the scanner radius, and θ is the acolinearity between the two 511keV
photons. The FWHM of ∆x is then about 0.0022D, where D is the diameter.
Hence, for a whole body PET system with a diameter of 0.8 meter, the acolinearity
introduces a Gaussian blurring with a FWHM of about 1.74 mm. A way to
minimize this effect is by reducing the diameter of the ring detector as much as
possible, which is more difficult for a whole-body PET scanner than for a brain
or small animal scanner.
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1.2.3 Combination of the resolution factors

The positron range and non-collinearity contribute to the system spatial resolu-
tion. Figure 1.9 (a) shows the combination of these factors on the spatial reso-
lution for a 2mm crystal width and 20 cm system diameter, which is typical for
animal imaging system designs, and figure 1.9 (b) illustrates the case for a 4 mm
crystal width and 80 cm diameter system diameter, which is a type of human
imaging system design. The positron source used in this example is 18F and the
detector is of a discrete type, which has a spatial resolution equal to the half of
the width of the detector in the central of the field of view (more discussion in
section 2.4.1).

For the small animal system, the total spatial resolution combined by the
three factors are 1.4 mm FWHM and 2.7 full-width at tenth-maximum (FWTM).
Thus, the resolution blurring due to positron range and non-collinearity adds
about (1.4 − 1)/1 = 40% to the system resolution, relative to the detector res-
olution. In this situation, the 18F positron range and the detector size are the
dominating factors in the system spatial resolution. For the large human system,
the total spatial resolutions are 2.9 mm FWHM and 5.2mm FWTM. Here the
non-collinearity and detector size dominate.
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(a)

(b)

Figure 1.9 – Spatial resolution blurring factors and their combination for 18F
with (a) 20 cm system diameter and 2 mm wide detectors, and (b) 80 cm system
diameter with 4 mm detectors. Figure from [42].



Chapter 2

PET detectors

The detection of 511 keV photons emitted as a result of a electron-positron an-
nihilation following the radio-tracer decay is one of the most important low-level
stages in nuclear imaging modalities such as PET. The ability to precisely de-
termine the coordinates of scintillation events implies a low uncertainty on the
data passed to the reconstruction algorithm and thus results in high quality to-
mographic images.

Equally important is the detection efficiency of the annihilated photons. Ne-
glecting photons is undesired in PET scans since higher efficiencies allows reducing
the injected radio-tracer dose and the patients exposure to radiation. In addition,
PET imaging is based on coincidence detection. If the sensitivity of its detectors
is reduced by a factor p, then the sensitivity of the PET scanner is reduced by a
factor p2.

This chapter introduces the basic terms and physics involved in the detection
process. It also introduces the two classes of scintillation based detectors for PET:
pixelated detectors found in the traditional designs and monolithic PET detectors
which are the subject of this thesis. The important performance parameters will
be discussed for both classes. An overview of existing algorithms to obtain the 3D
interaction position in monolithic detecters will be given in the next chapter while
a novel method to obtain the 3D interaction position is described in Chapter 4.

2.1 Scintillators in PET

An ideal gamma ray detector would convert the energy of a 511 keV gamma
directly into an electrical signal. This could theoretically be done using solid state

23
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detectors such as silicon based detectors (e.g. APD) or Cadmium Zinc Telluride
(CZT) detectors. However, an APD is made of low Z1 materials, and hence the
stopping power is rather low. This makes it ineffective as a direct gamma ray
detector. As for CZT, the time resolution is limited by the rather slow speed of
the charge collection and hence the thickness of the detector is restricted [43].

State of art detectors for 511keV gamma rays used in PET rely on scintillator.
The detector efficiency is increased by transforming the energy of the 511 keV
photon into an electrical signal in an indirect way by first converting them into
many low energy photons (in order of a few eV) which can then be easily detected
by classical photo detectors.

2.1.1 Brief description of the scintillation mechanism

The first step in this conversion process is done by scintillators. Scintillator ma-
terials exist in two different types: organic and inorganic scintillators. Organic
scintillators are composed of organic molecules, consisting for the most part of
low Z atoms and have therefore a long radiation length. Organic scintillators are
mainly used to track charged particles. PET scanners therefore make only use of
inorganic scintillators, which are composed of ionic crystals that contain a large
percentage of atoms with a high Z. Hence, they can efficiently stop gamma rays.

In a pure crystal, there are two energy bands available for electrons: the va-
lence band and the conduction band (figure 2.1 left). The energy range inbetween
the valence band and the conduction band is called the band gap or forbidden
gap, and is void of electrons in case of pure crystals. If an electron from the
valence band receives enough energy (> band gap energy), it can cross the band
gap and reach the conduction band.

The scintillation mechanism in inorganic scintillators can be divided in three
steps:

1. Excitation

2. Thermal relaxation

3. Photo emission

The excitation occurs when a gamma photon interacts with an inorganic scintilla-
tor, creating a hole in the valence band of the scintillator and an energetic electron.

1Z stands for the atomic number of a material
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Figure 2.1 – (left) Bands in a pure crystal, (right) GSO doped with Ce is an
example of a scintillator containing an activator. It has energy levels within the
forbidden gap. Decay from an electron between these levels results in the emission
of a photon with a wavelength below the absorption wavelength of the scintillator.

The electron losses its energy through multiple inelastic scattering, leading to a
multiplication of the excitations.

The thermal relaxation deals with the thermalization of the electrons and
holes through the emission of phonons (i.e. heat energy). At the end of this
thermalization, the electrons are at the bottom of the conduction band and the
holes are at the top of the valence band [58].

The electrons in the conduction band could then recombine again with holes
in the valence band, resulting in the emission of a photon. This process is not
very efficient since the photons can be re-absorbed in the scintillator to create
a new electron-hole pair, i.e. the emission wavelength = absorption wavelength.
In other words, the scintillator is not transparent to its own scintillation light.
In addition, the energy corresponding to the width of the band gap corresponds
typically to photons that have a wavelength above the visible or soft UV light.
This makes them hard to detect by the photo detector.

To overcome the absorption problem in the crystal, activators are added to
the scintillator material. These activators have energy levels within the band
gap (figure 2.1 right). During the thermal relaxation phase, the holes ionize the
activation sites. The electrons migrate until they drop into an ionized activation
site, leaving the activator in an excited state. These excited activator states
decay through the emission of a photon to the lower energy level just above the
valence band. Due to a process called stokes shift [68], the energy of the emitted
photon is lower than the energy required to excite the activators. Therefore,
the crystal is transparent to the emitted scintillation photons. Since the energy
difference between the two energy levels involved in the decay is smaller, the
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emitted scintillation photons have a longer wavelength, situating them in the UV
or visible light part of the spectrum.

The decay of the excited activator states is not instantaneous, i.e. the excited
states have a certain lifetime. Consequently, the scintillation light is not produced
in one infinitely short flash, but the intensity rises sharply to a maximum and then
decays slowly depending on the lifetime, i.e.

I(t) = I0e
− t
τ (2.1)

where τ is the decay time. These decay times vary from a few tens of ns to a few
hundred ns depending on the scintillator.

Only a fraction of the total energy deposited by the initial gamma photon is
converted into low energy scintillation photons. Each of the three steps involved
in the scintillation process has a certain efficiency to transfer the energy from one
step to the next. The product of the three efficiencies determines the amount of
light eventually produced by the scintillator.

There is another type of inorganic scintillator, which does not use luminescence
impurities. Bismuth Germanate (Bi4Ge3O12 or BGO) is an example of this kind
of “pure” inorganic scintillator. It uses an optical transition of the Bi3+ ion
that is a major constituted of the crystal. The optical absorption and emission
spectra of Bi3+states have a relatively large shift. As a result, the crystal remains
transparent to most of its own emission.

2.1.2 The Properties of Scintillators

The ideal scintillation material should have the following properties [9, 39, 59]:

1. High density ρ and high atomic number Z. When Z increases, the average
mean free path of the 511 keV photons decreases, resulting in a higher prob-
ability to interact in the scintillation crystal. In addition, the probability to
undergo a photo electric absorption (photo fraction) instead of a Compton
scattering also increases as Z increases (see figure 2.2). This is important
because one wants the 511 keV photon to deposit all its energy in the crystal.

2. High light yield or luminosity (i.e. the number of scintillation photons pro-
duced per unit energy deposited in the scintillation crystal) to minimize the
statistical error on the conversion step.



2.1. SCINTILLATORS IN PET 27

Figure 2.2 – Diagram showing the most probable photon interaction as a function
of its energy and the atomic number Z of the material, from [16].

3. The conversion should be linear, such that the total energy of the low energy
scintillation photons is proportional to the energy deposited by the incoming
photon.

4. The wavelength of the scintillation light should match the wavelength where
the photo detector is most sensitive.

5. The scintillator should be fast, i.e. the decay time of the induced lumi-
nescence should be short. This factor is important to achieve a good time
resolution needed to minimize the time window. Short scintillation pulses
also result in a smaller dead time of the detector, i.e. the PET system is
capable of handling higher rate of events.

6. The material should be of good optical quality and subject to manufacturing
sizes large enough to be of interest as a practical detector. This is important
because the scintillator should be made thick enough to efficiently stop the
incoming 511 keV photons.

7. Its index of refraction should be near that of glass (1.5) to permit efficient
coupling of the scintillation light to a photomultiplier tube or other light
sensor. Large mismatches in index of refraction results in significant internal
reflection at the scintillator/photodetector boundary and reduces the light
transmission to the photodetector.

8. The medium should be transparent to the wavelength of its own emission
for good light collection.
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9. No technological constraints, e.g. hygroscopic or fragile.

No scintillator can satisfy all the requirements mentioned above. The available
scintillators are sub-optimal for different applications. Some properties of common
inorganic scintillators used in PET are listed in table 2.1. A widely used inorganic
scintillator in the early time of PET is NaI(Tl). It was popular because of its
excellent light yield and the fact that it can be machined easily into large crystal
volumes. The main drawbacks of NaI(Tl) are that it has a long decay time (230
ns), and a low density resulting in long absorption length. In addition, it is
hygroscopic and fragile which makes the handling of the crystal less practical. It
has therefore been gradually replaced by BGO which first appeared in 1973. BGO
has a high density (7.13g/cm3) and a large atomic number Z=83, which gives it
significantly better stopping power. But it has a relatively low light yield, i.e.
about 10-20% of NaI(Tl) and also a long decay time (300ns).

Scintillator NaI(T1) BGO LSO LuAP
Wavelength of peak (nm) 415 480 420 365
Refraction index 1.85 2.15 1.82 1.94
Decay time (ns) 230 300 47 17
Mean free path (cm) 2.91 1.04 1.14 1.05
Density ρ(g/cm3) 3.67 7.13 7.4 8.34
Abs. Light Yield in Photons/MeV 38000 8200 26000 17000

Table 2.1 – Properties of common inorganic scintillators used in PET. Data from
[39, 15].

In 1991, Lu2(SiO4)O : Ce+ (LSO) was first described as a scintillator. LSO
has a much larger light yield (75% of NaI(Tl)), a fast decay time of 47 ns and
an emission spectrum conveniently peaked at 420 nm. At the same time it has
nearly the same high stopping power as BGO. Hence LSO has become one of
the most suitable scintillator materials for PET. However, it contains the long
lived radioactive isotope 176Lu, which decays via β− emission with half-life of
3.110 years. This leads to a background count rate of approximately 240 counts/s
per cm3 of LSO [30] continuously distributed over the full energy spectrum up
to 596keV [49]. But since PET is based on coincidence detection, this natural
background is not a prohibitive factor.

Another interesting scintillation material is LuAlO3 (LuAP), which has a very
short decay constant of 17 ns but its strong self-absorption of the scintillation light
limits the crystal thickness.
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2.2 PET photo detector

When talking about PET detectors based on scintillators, we should make a
distinction between the high-energy annihilation photons (511 keV) that are ab-
sorbed by the scintillator and the burst of low-energy optical photons that are
subsequently emitted by the scintillator and converted into an electric current by
a photo detector, as shown in figure 2.3. It is the number of visible light photons
generated in the scintillator that determines the amplitude of the electrical pulse.
Those electrical pulses will be later used to establish where the 511 keV interacted
in the scintillators.

Figure 2.3 – Process of converting the enrgy of a 511 keV gamma into a detectable
electrical pulse, from [59].

2.2.1 The properties of the photodetector

The photo detectors are designed to convert the low energy scintillation light into
electrical signals. In general, it involves generating a detectable electrical signal
proportional to the number of incident scintillation photons. The process involved
can be separated in three steps. First, primary photo electrons or electron-hole
(e-h) pairs are generated by incident optical photons. Then, one or more multi-
plicative bombardment steps (i.e an avalanche multiplication process) amplifies
the primary electrons to a detectable level of secondary electrons. Finally, the
electrical signal is formed by the collection of these secondary electrons.

Some important characteristics of a photo detector are:
1. Quantum efficiency (QE): the percentage of impinging photons that are

converted into primary photo electrons. This is usually a strong function of the
photon wavelength λ.

2. Collection efficiency (CE): the percentage of primary photo electrons that
are captured for the amplification process.
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3. Gain (G): the mean multiplication factor of the amplification process.
4. Excess noise factor (ENF): describes the uncertainty in the produced signal

due to gain fluctuations σG.
5. Equivalent noise charge (ENC): the amount of signal charge, usually ex-

pressed in number of electrons, which injected at the input of the electronic am-
plifier, generates an output signal whose amplitude is equal to the r.m.s. output
noise voltage.

6. Time jitter: the time fluctuation on the difference between the moment
a photon enters the photo detector and the moment of the output pulse. The
achievable lower bound on the time jitter is a function of the signal-to-noise ratio
(SNR).

A good photo detector should have a high QE and CE, a high gain with low
gain fluctuations (i.e. low ENF), a low ENC and a low time jitter.

The vast majority of commercially available PET scanners use photomultiplier
tubes (PMT), which have a low ENF and a high gain. The latter makes the
readout noise negligible. A limitation of the PMTs is their low quantum efficiency
(around 25%). Moreover, a PMT is very sensitive to magnetic fields and thus it
is impossible to operate a PMT-based PET in combination with a MRI scanner.

An interesting alternative to PMTs are the avalanche photo diodes (APD).
They have a higher quantum efficiency for blue-UV light (around 70-80 %) which
is emitted by most scintillators and are insensitive to magnetic fields. They are
also very light and not as bulky as PMTs. This makes it possible to create
very compact detectors and allow detector geometries not possible with PMT, e.g
mounting the APD on top of the scintillation crystal without much interference
of the incoming 511 keV photons. As will be shown later, this configuration
opens possibilities for parallax correction (section 2.4.1) or better positioning in
monolithic scintillators (section 5.2.8). The weak points of APD’s compared to
PMT’s are their need for very low noise pre-amplifiers due to the low internal
gain, worse timing accuracy, a higher sensitivity to changes in temperature and a
low voltage needed to operate the APDs.

Type QE CE ENF G Time jitter
PMT 0.15-0.25 0.9 1.3 106 100ps
APD 0.7 1.0 1.75 100 a few ns

GM-APD 0.15-0.3 1.0 1 106 90 ps

Table 2.2 – General comparison of photo detectors. Data from [72, 3, 13].
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In recent years, a new type of photo detector called Geiger-mode avalanche
photo diodes (GM-APD) or silicon photo multipliers (SiPMT), has generated
quite some interest. It has a high gain like PMTs and hence a very good signal
to noise ratio and it can also be used in magnetic fields. The first commercial
samples are coming onto the market now and they look very promising for future
medical imaging applications. Table 2.2 shows a comparison of typical values of
the properties from these three types of photo detector. A brief description of
their internal mechanisms will be given in the following subsections.

2.2.2 Photomultiplier tube

A simplified construction of a PMT is shown in figure 2.4. The scintillation light
enters a PMT through a transparent window. On the back side of this window is a
thin photo sensitive layer, called the photo cathode. When they interact, incident
scintillation photons create low-energy electrons with an efficiency given by the
QE of the PMT. The charge produced by the photo cathode contains only few
hundred electrons and this is not sufficient to serve as a usable electrical signal.
Therefore, PMTs are equipped with a series of metal dynodes in a vacuum tube
to multiply the electrons. The photo electrons generated from the photo cathode
are focused and accelerated by an electric field to the first dynode. Each of these
electrons liberates additional electrons in the first dynodes, and a small fraction
of these liberated electrons can escape from the surface of the dynode and reach
to the second dynode. This process is repeated until the last electrode, called the
anode. The anode is at ground potential, while the photo cathode is at some large
negative potential, typically -500 V to -2000V . Each dynode is kept at some large
negative potential, increasing from the previous one in steps of typically 150 V.
These voltages are obtained with a resistor chain. The total multiplication factor
of the electrons can reach up to 106 or more. The electrical output signal is taken
from the anode and is proportional to the light received by the PMT.

Presently, the QE of PMTs is limited to about 30%. The CE represents the
percentage of photo electrons that are captured by the first dynode and has a
typical value around 90%. The total PMT gain is the product of the electron
multiplication factors at each of the dynodes. The total PMT gain is usually in
order of 106. The signal g at anode, expressed in electrons, can then be defined
as
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g = Nγ ·QE · CE ·G (2.2)

where Nγ is the number of incident scintillation photons.
Each dynode amplification process introduces a widening of the spread in the

distribution of the electron gain. This spread is represented by the ENF, i.e.

ENF = 1 +
1

δ1
+

1

δ1 · δ2
+ · · ·+ 1

δ1 · δ2 · · · δn
(2.3)

where δi is the gain of the ith dynodes [9]. A typical value of the ENF in a PMT
is about 1.3.

Figure 2.4 – Scheme of a photomultiplier tube: 1 - incident light, 2 - semi-
transparent photo cathode, 3 - focusing electrodes, 4 - typical photo electron tra-
jectories, 5 - vacuum tube (glass), 6 - dynodes, 7 - anode. Figure from [9].

2.2.3 Avalanche photo diode

A simple silicon photo diode is based on the formation of a PN semiconductor
junctions. The PN junction principle is presented in figure 2.5. N-type silicon is
silicon that has been chemically combined (doped) with phosphorus gas to make
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it conductive. A silicon atom has four electrons in its outer shell and bonds tightly
with four surrounding silicon atoms creating a crystal matrix with eight electrons
in the outer shells. However, phosphorus has five electrons, and when combined,
the fifth electron becomes a "free" electron that moves easily within the crystal.
Because the charge carriers are electrons, n-type refers to a negative charge. In
contrast, p-type silicon is silicon doped with boron gas. Boron has only three
electrons in its outer shell and can bond with only three of the four surrounding
silicon atoms. This leaves one silicon atom with a vacant location in its outer shell,
called a "hole," that readily accepts an electron. Because the charge carriers are
holes, p-type silicon is said to have a positive charge. The PN junction is the
interface at which p-type silicon and n-type silicon make contact with each other.
The density difference of electrons and holes makes them diffuse to the adjacent
region of the other type. After losing its free electrons, the n-type region becomes
positively charged, while similar in the p-type region, a negative charge will be
created. Thus an electric field is built up. Once the electric field becomes strong
enough, the diffusion of the electrons and holes will be significantly reduced. This
region with reduced number of charge carriers is called the depletion region.

Figure 2.5 – P-N junction principle.

When a scintillation photon, which typically carries about 3-4 eV of energy,
falls into the depletion region and interacts, it has sufficient energy to create
electron-hole pairs since the band gap energy of a semiconductor is approximately
1-2 eV. The created charges will be pushed to the side by the electric field in the
depletion zone and collected, contributing to a current signal.
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Using external metal contacts on the n-type and p-type silicon side, one can
enhance or reduce the internal potential. The former case is called reverse biasing
and increases the electric field in the depletion area, which efficiently sweeps out
any electron-hole pairs created by absorbing incident photons.

A normal silicon photo diode only converts some of the impinging photons
to electrons, which means it generates a signal which has no internal gain. A
small signal leads to a reduced signal-to-noise ratio, which makes the simple
photo diodes not suitable for PET. An improved version of a photo diode is the
avalanche photo diode. By adding a big reverse bias voltage over the P-N junc-
tion, an avalanche multiplication process can be initiated. One common choice of
configuration of avalanche photo diodes is shown in figure 2.6. A photon enters
through a very thin p+-layer, interacts in the silicon area, and the electron is
drawn to the right by a low field region, where it enters a high-voltage multiplica-
tion region. Here the electron can obtain sufficient energy to start an avalanche
of electron-hole pair multiplication. A typical gain of 100 can be achieved in this
stage, resulting in a small but usable signal.

Figure 2.6 – A configuration of avalanche photo diodes. Figure from [39].

A typical gain in an APD is only about 100 because the reversed bias voltage
should be carefully added in order to make a good control of the fields. This is
because only the electrons should contribute to the signal amplification in the
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avalanche process. The holes, on the other hand, should be extracted to the
opposite direction faster than they can multiply themselves. Hole multiplication
also produces additional free electrons and leads to a runaway process. It will
result in a very high gain of about 106, but the signal is constant rather than
being proportional to the impinging number of photons. Hence, it cannot be used
to indicate the amount of the detected scintillation light. In practice, the APD
voltage applied is lower than the voltage at which this breakdown occurs. The
gain factor is an exponential function of the reverse voltage, and it can only be
in the order of a few hundred. Beside that, the gain is extremly sensitive to the
voltage and it is also a strong function of temperature. It decreases by a few
percent per degree as the temperature is increased [39].

Depending on the wavelength of the impinging photon, the QE in APDs usu-
ally ranges from 60% to 80%, which is much higher compared to PMTs. Figure
2.7 shows an example of the QE as a function of the wavelength of the incident
photons for the Hamamatsu S8550 APD, which is the detector used in this thesis.
The peak photon wavelength value produced by LSO is 420nm. At this wave
length, the Hamamatsu S8550 APD has a QE of about 70%. The ENF for an
APD is worse than for a PMT because of the larger statistical fluctuations that
occur during the avalanche multiplication process. A typical value of the ENF for
APDs is around 2.

Figure 2.7 – Wavelength dependence of the QE for the S8550 Hamamatsu APD.
Figure from [29].
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2.2.4 Geiger-mode avalanche photo diode

The gain as a function of the reverse bias voltage for an ordinary photo diode,
a normal APD (operated in linear mode) and Geiger-Mode APD are compared
in figure 2.8. When the APD is biased above the breakdown voltage, the electric
field in the multiplication region is so high that, when an impact ionization chain
is initiated, not only electrons but also the holes multiply faster than they can be
extracted. In this way gains of about 106 can be reached. APDs working in this
bias voltage regime are called Geiger-Mode APDs. They act as a digital device,
switching from an off-state to a conducting state in reaction to the detection of a
single photon.

Figure 2.8 – Typical gains for an ordinary photo diode (gain = 1), a normal
APDs biased below the breakdown voltage and a Geiger-mode APDs biased above
the breakdown voltage

GM-APDs are known under several different names. Due to their PMT-like
characteristics (i.e. much higher gain than APDs and better timing capabilities),
they are also commonly called Silicon Photo multipliers (SiPMT). And because
they have the ability to count single photons, they are sometimes also known as
multi-pixel photon counters (MPPC).

Because a GM-APD is a binary device, a large single pixel cannot determine
how many scintillation photons imping at one given time. The idea of using
Geiger-Mode APDs to detect many scintillation photons, is to subdivide the sen-
sitive area of the GM-APD in an abundance of very small micro cells in the order
of 25×25 to 100×100 µm2 each (figure 2.9 left). Every micro cell can detect one
single impinging scintillation photon. The output signal from the Geiger-mode
APD pixel is the total sum of the outputs from all the micro pixels , i.e. a sig-
nal proportional to the number of detected scintillation photons (figure 2.9 right)
which on its turn is related to the amount of energy deposited by a 511 keV photon
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in the scintillation crystal. In other words, a GM-APD works in photon counting
mode. As long as the number of micro cells is much larger than the number of
impinging scintillation photons, it will respond linearly with the magnitude of the
scintillation light signal.

Figure 2.9 – (left) picture of a 1x1 mm Hamamatsu GM-APD pixel with 20x20
micro cells, (right) Pulse height spectrum using a Hamamatsu S 10362-11-025U.
Figure from [29].

Because GM-APD are separated into micro cells, there are dead spaces be-
tween the micro cells within one GM-APD. Therefor, instead of using the term
QE for each detector channel, GM-APD are usually characterized by the Photon
Detection Efficiency (PDE). The PDE is a measurement of what percentage of
the incident photons was detected, taking into account the geometric fill factor
(i.e. percentage of a pixel that is actually sensitive) and the avalanche initiation
probability:

PDE = QE × fgeom × PA (2.4)

where QE is the quantum efficiency, fgeom is the geometric fill factor, PA is the
Avalanche initiation probability. The latter two are defined as

fgeom =
EffectiveCell Size

Total P ixel Size
(2.5)

PA =
Number of excited pixels

Number of pixels hit
(2.6)

When an avalanche occurs in one micro cell, it is dead during some time.
This period is called the recovery time and is typically of the order of a few tens
of ns. During that period no other impinging photons can be detected in that
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cell. Hence, the number of triggered pixels has a nonlinear relationship with the
number of incident photons:

Nfired = Ntotal ×
[
1− exp

(
−Nphoton × PDE

Ntotal

)]
(2.7)

where Nfired is the number pixels that fired, Ntotal is the total number of mi-
cro cells in a GM-APD pixel and Nphoton is the number of incident scintillation
photons.

Increasing the number of micro cells also increases the total dead space in the
GM-APD pixel and hence reduces fgeom. For a 1600 micro cells/mm2 Hamamastu
GM-APD, the PDE is 20%, while for 400 micro cells/mm2 it is 35%. This is
significantly lower compared to the QE of an ordinary APD. Therefore the size
of the micro cells is a trade-off between the PDE and the linearity at high light
fluxes.

Finally, it should also be noted that because GM-APD are APD-like detectors,
they can also be used in magnetic fields and allow compact detector geometries.

2.3 Detector performance

The quality of a PET image is determined by a number of factors such as the
fundamental resolution limits discussed in section 1.2, the detector components
and image reconstruction algorithms. In this section, we will discuss several key
parameters defining the performance of PET detectors and their impact on PET
imaging. These parameters are energy resolution, sensitivity, spatial resolution
and time resolution.

2.3.1 Energy resolution

The energy resolution tells us something about how precisely the detector mea-
sures the energy of the gamma ray. Usually one wants only the events in the
photo peak, corresponding to gamma rays that deposited all their energy. This
ensures that these gamma rays were not scattered within the patient body and
thus resulting in wrong LORs. It is usually accomplished by imposing an energy
threshold on the detection of a impinging photon. Only when the measured en-
ergy is higher than this threshold, the event will be accepted. A finite energy
resolution results in a loss of ’good events’ when the energy threshold is put too
high because some of the photons that deposited their full energy will have mea-
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Figure 2.10 – (left) Energy spectrum of an ideal detector, (right) Spectrum of 511
keV photons measured with a 20× 10× 10 mm LSO scintillator block coupled to a
Hamamatsu S8550 APD array. Figure from [40].

sured energy below the threshold level. Hence, a good energy resolution (i.e. a
narrower photo peak) allows to more efficiently remove incident photons that did
not deposit 511 keV in the detector.

When a 511 keV photon interacts with an ideal detector, a spectrum as de-
picted in figure 2.10 left will be generated. The photo peak, corresponding to
the full energy of the impinging photons, is a perfect δ-peak. Events in this peak
have either undergone a single photo-electric absorption, or one or more Compton
interactions followed by a photo-electric absorption. In both cases, the gamma
ray deposits all its energy into the detector. Events that experience only one
Compton scattering and then leave the detector are in the lower energy part of
the spectrum called the Compton region. The upper boundary of the Compton
region shows up as a sharp edge called the Compton edge. This is because dur-
ing Compton scattering (see Appendix A) only a part of the gamma ray energy
is transferred via the recoil electron to the detector. In case a 511 keV gamma
scatters over an angle θ, the amount of the energy Ere that the recoil electron
obtains is given by (2.8):

Ere = 511keV − Esc with Esc =
511keV

2− cosθ
(2.8)

where Esc is the remaining energy of the photon after being scattered. Since the
scattering angle of the gamma photon can range from 0◦ to 180◦, the energy of
the recoil electron can vary between 0 keV and 340.7 keV, i.e. the gamma photon
cannot lose all its energy in a single Compton interaction. The energy lost during
a 180◦ backscatter determines the position of the Compton edge in figure 2.10.
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The valley between the Compton edge and the photo peak contains events that
have undergone multiple Compton scatterings but no photo electric absorption,
i.e they left the detector carrying away some residual energy.

In a real detector, one can never obtain the ideal spectrum but rather some-
thing shown in figure 2.10 right. In this spectrum, the photo peak is widened due
to the finite energy resolution of the detector. The energy resolution is defined as
the relative FWHM of the photo peak, i.e.

4E(%) =
FWHM

E
(2.9)

The FWHM for a Gaussian distribution is 2.35 times standard deviation.
The energy resolution is worsened by three effects: the statistics of the light

generation in scintillator; the detector related contributions (e.g. QE, CE, ENF)
and readout electronic noise.

Scintillator contribution

The amount of light generated in the scintillator when a gamma photon deposits
its energy is not constant. In addition, the amount of scintillation light does not
always vary exactly linearly with the amount of energy put in the crystal (figure
2.11). Hence the total amount of light produced for a given total amount of energy
deposited depends on how this energy was deposited. Also, non-uniformity of the
scintillation crystal and reflective coatings make the amount of light exiting the
crystal depended on the position of the gamma photon interaction.

Let us assume that the amount of scintillation photons generated No is drawn
from a distribution with mean No and variance σ2

No
. These optical photons

then have some probability η that they impinge onto the photo detector array.
Therefore, the amount of scintillation photonsNγ impinging on the photo detector
array is generated by a binomial selection of a random process. The mean Nγ

and variance σ2
Nγ

are then [5]:

Nγ = ηNo (2.10)

σ2
Nγ = ηNo + η2(σ2

No −No) (2.11)

Since the energy resolution is measured by summing the signals from all photo
detector pixels together, the probability for the binomial selection η can be ap-
proximated by the total solid angle subtended by the photo detectors as seen from
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Figure 2.11 – The non-linear light yield behavior of scintillators. Data for this
figure are taken from [57].

the source. In addition it also includes effects due to the transport of the optical
photons in the scintillation crystal.

One interesting fact from (2.11) is that if η is small, σ2
Nγ
≈ ηNo, i.e. a binomial

selection with a small probability of a random process is a Poisson process. This
observation will be used later in section 3.2.1 and section 5.2.1. However, for the
discussion on the energy resolution where we look at the light collected by the
complete photo detector array, η is too big to be ignored.

Detector related noise contribution

The conversion of the Nγ scintillation photons into charge carriers (i.e. photo
electrons in case of a PMT or electron-hole pairs in case of an APD/GM-APD)
and the amplification of those charge carriers introduces extra uncertainties on the
measured signal amplitude. The QE and CE both define probabilities involved in
converting the scintillation photons into charge carriers and the collection of these
charge carriers for further amplification. Hence, the number of primary charge
carriers Ncc is again the result of a binomial selection process. The mean and
variance on the resulting distribution is given by:
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N cc = QE × CE ×Nγ (2.12)

σ2
Ncc = QE × CE × (1−QE × CE)×Nγ + (QE × CE)2 × σ2

Nγ (2.13)

The gain G of the photo detectors introduces further fluctuations. After multi-
plication by an average gain factor G, the mean of the signal g emerging from the
photo detector is then given by

g = N cc ×G = Nγ ×QE × CE ×G (2.14)

while the variance on the photo detector signal is given by [5]:

σ2
g = G

2 × ((1 +
σ2
G

Ḡ2
)×N cc + σ2

Ncc −N cc) (2.15)

= G
2 ×QE × CE ×Nγ ×

(
ENF +QE × CE ×

(
σ2
Nγ

Nγ

− 1

))
(2.16)

where ENF = 1 +
σ2
G

Ḡ2 is the excess noise factor.

Additional electronic read-out noise contribution

Electronic noise generates an additional spread on the final signal emerging from
the detector pixel which can be modeled as an additive noise term with zero
mean and variance σ2

E . The σE is usually expressed as an equivalent noise charge
(ENC) referred to the input of the preamplifier reading out the photo detector.
So, the final energy resolution can be written as

4E =
2.35× σ

E
(2.17)

σ

E
=

√
σ2
g + σ2

E

g

=

√
G

2 ×QE × CE ×Nγ ×
(
ENF +QE × CE ×

(
σ2
Nγ

Nγ
− 1

))
+ ENC2

G×QE × CE ×Nγ

=

√√√√(σ2
Nγ

N
2

γ

− 1

Nγ

)
+

ENF

QE × CE ×Nγ

+

(
ENC

G×QE × CE ×Nγ

)2
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The first part under the square root is the influence of the scintillator, while
the second part is the effect due to the photo detector and the last part is due
to the electronic noise. Since the gain G from a PMT or GM-APD is very large
(106) compared to the electronic noice, the last term can therefore be ignored
in those two detectors. Further discussion and the value of those parameters in
(2.17) used in our setup will be given in Chapter 5.

2.3.2 Sensitivity

The image quality also depends on the amount of coincidence events collected.
Injecting a higher tracer dose to the patient or prolonging the acquisition time
will obviously result in the detection of more coincidences. Nevertheless, these
two ways are limited in practice due to patient comfort and safety. Therefore,
system sensitivity is an essential factor for a high quality image. Sensitivity is
defined as the ratio of the number of detected coincidences over the number of
emitted photons pairs for a given tracer distribution. It tells us how efficiently a
scanner can detect the 511 keV photon pairs emitted from the patient.

The scanner sensitivity η can be divided in a number of components: the 511
keV gamma ray detection efficiency ε, the solid angle coverage of the detectors
Ω
4π , the time and energy windows applied. The sensitivity can hence be expressed
as:

η = Φε2 Ω

4π
ϕ (2.18)

where Φ is the probability that coincident events are detected within a time
window and the energy window (typically set at 350-650 keV) given the source
emission rate. The detection efficiency ε of an individual detector is defined as

ε = 1− e− dλ (2.19)

where λ is the attenuation length of the 511 keV gamma ray in the detector
material, d is the thickness of the detector. According to the Beer-Lambert law,
e−

d
λ is the probability that a gamma ray can pass though a distance d without

interaction. The detection efficiency ε is squared as a result of the coincidence
detection. A thicker detector therefore leads to a better sensitivity for the same
detector material.

To enlarge the solid angle coverage Ω
4π of the detectors, PET scanner are most

often designed as multiple rings of detector modules surrounding the patient.
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Inbetween the detector modules, there are usually wedge shaped gaps, resulting in
a loss of efficiency. The detector modules themselves can be made up of continuous
or pixellated crystals. In the later case, an additional factor, called the packing
fraction ϕ, needs to be added in (2.18), because there are small gaps for reflective
material in between the pixelated detector elements. This fraction is about 10%
for a modem PET scanner [43].

2.3.3 Spatial resolution

The aim of a PET scanner is to measure the decay positions of the tracer. The
accuracy of the final PET image depends on the spatial resolution of the detectors
and is usually expressed in terms of FWHM and FWTM of the point spread
function (PSF), i.e. the response in the image to a perfect point source. The
system spatial resolution of PET consists of several components:

1. fundamental spatial resolution limits due to the positron range and non-
collinearity of the annihilation gamma rays (see section 1.2)

2. error on the determination of the LOR positions due to the scanner ge-
ometry, detector properties and the algorithm being used to determine the
position from the detector signals

3. smoothing and possible artifacts introduced during the tomographic image
reconstruction process.

Depending on the purpose, a different range of spatial resolutions are required
from a PET scanner. A scanner for small animal desires a system resolution
below 1.5 mm, while a brain or breast PET usually needs 2-4 mm resolution and
for a whole body human PET, 4-6 mm resolution is needed. Here in this thesis,
we will only discuss the spatial resolution component introduced by the detector.

Intrinsic and coincidence resolutions

The contribution of the detector is often defined in terms of intrinsic resolution.
The intrinsic resolution is the accuracy with which the interaction point of a 511
keV gamma on a detector can be determined. If the detector is not capable to
measure the interaction depth (DOI), then the interaction point is always placed
at a fixed depth. In this case, the DOI is usually fixed at a depth equal to the
mean free path length of a 511 keV gamma in the scintillator material.
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The positioning error is given by the minimum distance between the LOR,
defined by the positions where two annihilation photons are localized, and the
true electron-positron annihilation point. We will call this error the coincidence
resolution to distinguish it from the intrinsic detector resolution.

The distance ∆x between the LOR and the true annihilation point (i.e. co-
incidence error) is related to the errors 4x1 and 4x2 on the interaction point of
both 511 keV photons and the distances d1 and d2 from the source to the detectors
(figure 2.12).

Figure 2.12 – The coincidence error 4x not only depends on the 511 keV photon
position estimation errors 4x1 and 4x2, but also on the distances d1 and d2 of the
annihilation point to the detectors

The probability P (∆x) to obtain a coincidence error ∆x for an annihilation
point in the center of the field of view (FOV) is given by

Pcoinc(∆x) =

ˆ +∞

−∞
d(∆x1)d(∆x2)Pintr(∆x1)Pintr(∆x2)δ(∆x− ∆x1 + ∆x2

2
)

(2.20)

= 2

ˆ +∞

−∞
d(∆x2)Pintr(2∆x−∆x2)Pintr(∆x2) (2.21)
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where P (∆x1) and P (∆x2) are the probabilities that the two annihilation photons
were localized with an intrinsic error of respectively ∆x1 and ∆x2. The Dirac delta
function in the last term of the integrand in equation (2.20) gives the relationship
between the intrinsic errors measured by the two detectors and the coincidence
error at the center, i.e. at the center the coincidence error is the mean of the
intrinsic errors. If the annihilation point was not in the center, this term has to
be changed accordingly. If we rewrite equation (2.20) as (2.21), the coincidence
error distribution can be seen as two times the convolution of the intrinsic error
distribution with itself evaluated at a value of 2∆x, i.e.

Pcoinc(∆x) = 2(Pintr ⊗ Pintr)(2∆x) (2.22)

Parallax error

When two annihilation photons, originating from a source close to the center of
the scanner, are detected by two radially opposite detectors, the maximum uncer-
tainty is determined by the crystal size (detector pair A-B in figure 2.13 left). The
depth at which the two gamma photons interacted in the crystal doesn’t matter
when the photons imping perpendicular. The inability to determine the DOI of
a gamma photon creates an additional contribution to the coincidence resolution
when the incidence angle is not perpendicular (detector pair C-D in figure 2.13
left). This happens when the annihilation occurred outside the center of the FOV.
The origin of this parallax error is due to the significant penetration power of the
gamma photons into the scintillator. When only the (X,Y) coordinate of the in-
teraction point can be determined, any point along the line in the Z-direction (i.e.
radially away from the scanner center) passing through the estimated interaction
point could be considered as a starting point of the LOR. At non-perpendicular
incidence, the coincidence resolution is degraded as the incidence angle increases,
i.e. as the radial distance of the annihilation point to the center increases. In
other words, the resolution of a scanner is optimal in the center and degrades
towards the edges. This phenomena is called the parallax error.

If the detector can determine the DOI with some level of accuracy, the segment
of the line along the Z direction containing possible interaction points is shortened.
This decreases the parallax component to the coincidence resolution (detector pair
C-D in figure 2.13 right).

Unfortunately most detectors fail to provide full three-dimensional information
about the interaction position within the scintillation crystal.
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Figure 2.13 – (left) Parallax error if no DOI measurement is available, (right)
Parallax error with DOI measurement.

2.3.4 Time resolution & time of flight PET

Time resolution is the fluctuation on the time difference between the moment that
the 511keV gamma ray interacts with the scintillator and the time the impinging
event is recorded by the data acquisition of the detector. It depends on the rise
time of the scintillation light, the jitter on the transit time of the charge carriers
in the photodetector, as well as the signal to noise ratio of the amplified signal
emerging from the detector. The time resolution determines the minimal length
of the coincidence time window that can be chosen without significant loss of
coincidence events.

A good time resolution can also improve the signal to noise ratio in the recon-
structed image. If the information on the time difference between the arrivals of
the two coincidence photons is not used, each location along the LOR is attributed
with the same probability of having emitted the pair (figure 2.14 left).

Figure 2.14 – Illustration of TOF PET : (left) uniform-probability weighting of
annihilation site in standard PET, (right) use of TOF information to constrain the
location of annihilation site during image reconstruction.
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In theory, if a PET scanner would be able to record the precise interaction
times of the photons involved in a coincidence, the annihilation point along the
LOR can be deduced exactly from the time difference ∆t and speed of the light
in the object c. Hence no image reconstruction would be required any more.
The location of the annihilation event presented by the distance to the midpoint
between the two detectors, can be calculated as:

∆d =
∆t× c

2
(2.23)

Suppose we want to achieve a spatial resolution of about 5 mm without the need
for image reconstruction, then the photon arrival times would have to be recorded
with a precision of approximately 33 ps. This is currently impossible to achieve
using present technology.

If the PET system has a time resolution that can record the time difference
on the arrival of the 2 annihilation photons with reasonable accuracy, then this
can help to reduce the signal-to-noise ratio (SNR) in the reconstructed image by
given each location along the LOR a probability of containing the annihilation
point (figure 2.14 right). The probability is Gaussian distributed around a posi-
tion determined by the measured time difference and a standard deviation equal
to the time resolution. This is called “time-of-flight” PET or TOF-PET. The im-
provement of the SNR of TOF-PET images compared to non-TOF-PET images
is given by [15]:

SNRTOF ≈

√
2D

c4t
× SNRnon−TOF (2.24)

where D is the diameter of the object being imaged, c is the speed of light in
the object, and 4t is the time resolution of the system. From (2.24) if follows
that the SNR enhancement is higher for thicker patients. Instead of improving
the image SNR, one can also use TOF PET to keep the same SNR while either
shortening the scan time or injecting a lower dose.

In the early 1990s’, TOF became a popular research topic a first time. But
at that time, the only existing fast scintillator crystal was BaF2. However, it
emitted only 15% of its scintillation light with a fast decay time of 0.8 ns. In
addition, this crystal has a low Z. This means that to have enough sensitivity,
very long crystals are needed, and that will introduce large parallax errors.

In recent years, TOF-PET became more practical due to the discovery of
fast scintillators with good stopping power such as LSO and LYSO, and the
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development of speedy electronics. A recent commercial LYSO TOF-PET system
(Philips Gemini TF) has achieved a 600 ps time resolution, i.e. the uncertainty
on the location of the annihilation point along the LOR is reduced to about 9
cm. The newer GM-APD photodetector also seem very promising for TOF-PET.
Recent research [72] has shown that a time resolution of 100 ps can be achieved
with 3×3mm2 Hamamatsu GM-APD S10362-33-050c coupled to a 3×3×5mm3

LaBr3 : Ce5% crystal, and 172 ps FWHM when a 3 × 3 × 5mm3 LSO crystals
is read out with same photodetector. As for monolithic crystals, because the
scintillation light has to be shared over multiple photo detectors, the signal-to-
noise ratio for each photodetector is lower than for pixelated crystal. However,
a promising time resolution of 225 ps FWHM for a monolithic crystal with size
16.2 × 18 × 10mm3LaBr3 : Ce5% crystal coupled to a Hamamatsu GM-APD
S11064-050P (X1) 4 × 4 array, each pixel size of 3 × 3mm2, has been reported
recently by [72].

2.3.5 Requirement of PET scanners

Based on the target application area, each kind of PET scanner requires some
different kind of performance [44].

For a pre-clinical (e.g. small animal) PET, it is important to have a very high
spatial resolution due to the size of the small animal. For instance, it would need
700µm spatial resolution for mouse imaging to achieve the same image quality
as we currently obtain in human bodies [44]. Very high time resolution is cur-
rently not essential since for such a small diameter scanner, no adequately useful
information can be provided by TOF.

A whole-body human PET is different from pre-clinical PET. Current systems
typically have discontinuous scintillators with pixel sizes of 4× 4mm2. The dose
limitation and big radius of the detector ring, makes that each pixel detects a
limited amount of the gamma rays. Trying to reduce the pixels size will reduce
the statistics for the detectors even further. Therefore the SNR will become too
bad to have a good quality image. Thus, the most interesting development of the
whole body system is not on spatial resolution but on TOF.

A Brain-PET (or other specialized imaging systems) normally requires both
high spatial resolution (< 3mm3) and very good sensitivity, because many brain-
PET system need to produce good dynamic imaging. One of the strategies to
improve the sensitivity is to make the ring smaller. However this also introduces
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more parallax errors which require DOI measurement capabilities in the system.
So far, commercial brain PET systems rarely provide DOI information [44]. The
reason is that the existing methods that will be discussed in section 2.4.1 are not
cost-effective to produce.

2.4 Pixelated and monolithic scintillator detectors

The detector modules for PET can be divided in two broad categories: those that
make use of pixelated scintillators and those that use undivided (or monolithic)
scintillators.

2.4.1 Pixelated detectors

Localization principle

Most clinical PETs use discrete, pixelated crystals. In an ideal pixelated detector
module, each small individual crystal is coupled one-to-one to a corresponding
photodetector. In this case, the center of the crystal pixel that produced a signal is
used as the position where that photon was detected, i.e. no positioning algorithm
is needed. From a practical point of view, such a solution is not viable in large
systems since it would require a huge number of small photo detectors to read
out all the scintillator pixels. It would too expensive and too complicated. For
this reason, the PET block detectors were introduced (figure 2.15).

These detector modules consist of only few big PMTs (typically 4) which read
out the scintillation light of an array of smaller detector elements. The array of
pixels are created by making partial cuts with varying lengths into a block of
scintillator material. The pixels are separated by reflective material. The depth
of the saw cuts is empirically done in order to share scintillation light over all four
PMTs. The four PMT signals can then be used to determine which individual
pixel has generated the light due to a gamma ray interaction. In practice, this
will be done in two steps. First, the X and Y coordinates are calculated for each
gamma ray interaction based on:

X =
SA + SB − SC − SD
SA + SB + SC + SD

(2.25)

and

Y =
SA + SC − SB − SD
SA + SB + SC + SD

(2.26)
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Figure 2.15 – Block detector. Figure from [59].

where SA, SB , SC and SD are the four PMT signals as shown in figure 2.15.
These X and Y position are not the coordinates assigned to the gamma ray inter-
action point, but somehow reflect which small crystal generated the light. This
relationship is not completely linear across the whole detector surface. Therefore,
an empirical look up table is created to relate the (X,Y ) to a given individual
pixel. Figure 2.16 shows an examples of such a look up table for a 8*6 crystal
array.

Figure 2.16 – LUT relating the computed (x,y) position with a scintillator pixel
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If the position falls near the boundary of an area in the look up table, it is
possible that the event will be attributed to the wrong pixel due to statistical
fluctuations. This is called a coding error in the block detector. If the gamma
photon underwent a Compton interaction, and is subsequently absorbed in a
photo electric interaction, two light sources are produced. Since the light from
the two pixels can spread once it passed the end of the cuts, it will be interpreted
by the position algorithm as one event with a position somewhere inbetween the
two interactions. This obviously also results in a wrong position.

Intrinsic and coincidence resolution

The pixelated crystal detectors only have discrete position information, i.e. the
(X,Y) coordinate is always fixed to the center of the pixels that was selected using
the look up table. The maximum intrinsic positioning error is thus w/2, where
w is the width of the individual pixel. The probability P (∆x1) to obtain a given
intrinsic error ∆x1 is uniformly distributed over the face of the pixel, i.e.

P (∆x1,2) =
1

w
if |x1,2| <

w

2
(2.27)

= 0 if |x1,2| >
w

2

Using (2.22) and (2.27), the coincidence resolution can be computed for an anni-
hilation point in the central of FOV:

Pcoinc(∆x) =
2

w2
[w − |2∆x|] if |∆x| < w

2

= 0 if |∆x| > w

2
(2.28)

Equation (2.28) shows that the coincidence error distribution at the center of the
FOV has a triangular shape with a FWHM equal to half of the pixel width w
(in the middle of figure 2.17). It can be shown that as the source moves closer
to one of the detector, the coincidence error distribution gets a trapezoidal shape
and the FWHM also increases. When the source position is close to one of the
detector, the response function becomes a rectangular function, and the FWHM
is equal to the size of the detector w (figure 2.17).

Parallax correction

In recent years, many possible approaches have been proposed to solve the parallax
problem in pixelated detectors. These solutions need to add extra hardware in
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Figure 2.17 – Coincidence point spread function for a system based on individual
scintillator pixels. A point source is moved between two detectors. When the source
is at center of the FOV, the coincidence point spread function has a triangle shape
with a FWHM equal to half the pixel detector size w. For off-center emission points,
the shape becomes trapezoidal and ultimately the FWHM is the same as w.

order to provide DOI information. One method, known as a phoswich, uses two
layers of scintillator materials, where each of them can be distinguished by their
different decay times (the top of figure 2.18). Therefore, by looking at the decay
time of the pulses, a discontinuous two-level (top half and bottom half) depth
encoding is available. The DOI resolution is, however, limited by the thickness of
the crystal layer.

Another method, to determine the DOI is to use a second photo detector at
the top end (the bottom of figure 2.18). For long narrow pixelated crystal, the
photons generated by gamma ray interaction will reflect many times on the edges
before they reach an exit surface at the top or the bottom. At each reflection,
there is some probability for the light to leave the crystal. In addition, photons
which travel a longer distance will have a higher chance to be reabsorbed. Hence,
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the ratio of the amount of detected scintillation photons at the top and bottom
reflects the ratio of the distance from the interaction point to both ends and hence
the DOI can be estimated. The drawback of this method is that it increases the
cost and complexity of the scanner by doubling the number of photo detectors
and associated electronics. In addition, bulky PMTs can’t be used since the photo
detector on the top side of the pixel array blocks the incoming 511 keV gammas.
Hence, only APD or GM-APD detectors are possible candidates.
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Figure 2.18 – (top) Phoswhich method to obtain a 1 bit DOI information, (bot-
tom) the use of a second photo detector matrix on the top side of the crystal matrix
to determine the DOI based on the ratio of the light measured on both sides. Figure
from [59].
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2.4.2 Monolithic scintillator detectors

Localization principle

Monolithic scintillator based detectors [34, 36, 47, 69, 71, 74] consist of an undi-
vided block of scintillator material that is read out by an array of photo detector
pixels (e.g. multi anode PMT, APD array or GM-APD array). The difference
with pixelated detectors is that the scintillation photons can travel completely free
inside the scintillator block. As a result, the shape of the scintillation light distri-
bution measured by the photo detector array is related to the interaction position
(figure 2.19). The center of the light distribution is related to the (X,Y) position
whereas the width of the light distribution carries some information about the
interaction depth of the gamma photon.

Figure 2.19 – The interaction position of a gamma photon in a monolithic scin-
tillator block is related the shape of the scintillation light distribution measured at
an exit surface. Figure from [74].

Contrary to the discrete case where the intrinsic resolution is determined by
the pixel size, it is the position algorithm (i.e. how to extract the position in-
formation from the array of photodetector signals) and the signal to noise ratio
that determine the achievable spatial resolution. In addition, the estimated coor-
dinate are continuous in nature. Finally, the DOI can be provided using no extra
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hardware since the information is already encoded in the measurements.
The position algorithm for intrinsic spatial resolution in monolithic crystal is

the central topic of this thesis, which will be discussed in the following chapters.

Coincidence response function

We can again use (2.22) to find the distribution of the coincidence errors. If
we assume that the intrinsic error distribution is Gaussian distributed with a
σintr = FWHMintr/2.35, then it follows that the coincidence error distribution at
the center of the FOV is again Gaussian distributed with a standard deviation
σcoinc = σintr/

√
2. Similar like discrete detectors in 2.4.1, the coincidence resolution

increases as the emission point source moves away from the FOV center, as shown
in figure 2.20.

Figure 2.20 – For a system based on monolithic scintillators, the coincidence point
spread functions are Gaussian shaped. In the center of the FOV, the coincidence
resolution is a factor

√
2 smaller than the intrinsic detector resolution. Again, the

coincidence resolution increases as the emission point source moves away from the
center. Figure from [59].
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Parallax error correction

In continuous crystals the shape of the detected light signal has a relationship with
the DOI. Contrary to the pixelated detectors, no extra measurement hardware is
necessary. This make the use of monolithic scintillator blocks easier and cheaper
to implement. On the other hand, the algorithms that need to extract the DOI
from the measured signals are more complicated. This will also be detailed in the
following chapters.



Chapter 3

Position Estimation in Monolithic
Crystals

In order to use monolithic scintillator crystals in a PET detector module, one
needs a way to extract the interaction position from the scintillation light distri-
bution as it exits the block and is detected by a photo-sensitive detector array. A
first requirement is that the pixels in the photo detector array sample the 2D light
distribution with enough precision, i.e. the pixel size and pitch should be small
enough. To this extend, one is usually limited to the position sensitive photo
detectors available on the market. Pixellated photo detectors with pixels of 2x2
mm or smaller can now be easily found.

Numerous methods to obtain spatial information from a monolithic scintilla-
tor block have been presented in the past, starting with the simple 2D centroid
method, i.e Anger logic [2]. However, the bias and resolution of the estimator
increase a lot at the edge of the crystal. To overcome this problem, statistical es-
timation of the interaction position using 2D Maximum Likelihood (ML) was first
introduced by [28] and developed further by [6]. Since 511keV gamma rays have
a rather high penetrating power, the crystal is usually made thick and therefore
additional knowledge about the coordinate of the interaction point along the third
dimension (i.e. depth-of-interaction or DOI information) is required to correct for
parallax errors (see section 2.3.3 on parallax error).

Some groups have made an effort to obtain DOI information in monolithic
crystal by e.g. adding an analog resistor network to determine the spread of the
light, which reflects the DOI [41], or by separating the crystal into two to four
layers to achieve discrete DOI information [52]. Other groups tried to find the

59
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3D interaction position without using additional DOI measurements, but only use
the signals of the detected light themselves to find DOI directly or indirectly, e.g.
using an ML approach to localize the 3D interaction position [34, 47] or using
artificial neural networks (ANN) trained to determinate the 2D surface entry
position in the scintillator block [11]. The latter doesn’t require DOI information
since the DOI coordinate is fixed to the surface.

This chapter will give a brief introduction to some of the algorithms which
only use the embedded information from the signals of the detected light them-
selves, i.e. which don’t require additional hardware. Figure 3.1 shows an overview
of those algorithms. The algorithms can be divided in two main categories: those
which need some prior training (blue) and those which extract all the necessary
information immediately from the measured signals themselves (red). A direct
comparison of their performance is difficult since it also depends on the size and
type of scintillation crystal and on the photo sensitive detector. In the literature,
the described algorithms were usually applied to one specific combination of crys-
tal size and photo detector. For the sake of argument, we will therefore assume
that the photo detector consists of an 8x8 array of pixels found in many position
sensitive PMTs or combination of APD arrays.

The algorithm based on a simplified physical model (yellow) will be detailed
in Chapter 4 since it is the main subject of this thesis. The other numbered
algorithms in figure 3.1 will be introduced in this chapter.

3.1 Anger logic

A classic positioning method in monolithic crystals is the so-called Anger logic[2]
(No. 8 in figure 3.1). This method is a 2D-positioning algorithm that computes
a weighted center-of-gravity (COG) of the measured light distribution, i.e.

x̂ =

∑64
m=1(wxm × gm)∑64

m=1 gm
(3.1)

ŷ =

∑64
m=1(wym × gm)∑64

m=1 gm

where x̂ and ŷ are the estimated position in X and Y direction, wxm and wym are
fixed detector dependent weights for the mth pixel, and gm are the signal values
from the corresponding pixels. A trivial choice for the weights wxm and wym are
the coordinates xm and ym of the mth pixel.
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Figure 3.1 – Schematic diagram showing the different algorithms to find the po-
sition of an impinging photon using the embedded information from the signals.
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The Anger logic can be computed fast and is easily implemented in analog
hardware. One of the primary drawbacks of the basic Anger algorithm is the
fact that it suffers from large non-linearity effects when approaching the edge of
the monolithic crystal. As a result, photons impinging near the edge cannot be
localized properly and should therefore not be used. This lowers the sensitivity
of the PET system.

Another problem with the classic Anger logic is that it treats all signals equally.
In practice, pixels far away from the interaction point of the 511 keV photon in
the monolithic scintillator received only a very small fraction of the light. The
signal-to-noise ratio (SNR) of the electrical pulses produced by these pixels is
rather low. Some signals might even be dominated by noise. Treating all the
signals equally results in worse spatial resolution. Using a threshold preamplifier
with each of detector pixels can improve the situation, i.e. only signals above the
threshold value will contribute to the position calculation. In addition the weight
of pixels producing large signals can be increased by using nonlinear amplifiers.

Finally, the last major limitation of the Anger logic based positioning method,
is that it cannot supply any DOI information. Hence, Anger logic is incapable of
doing parallax correction.

3.2 Maximum likelihood algorithms

A number of research groups have been developing algorithms that take the statis-
tical nature of the measured photo detector signal into account by using Maximum
Likelihood (ML) based algorithms [5, 4, 33, 34, 45, 46]. We start by introducing
the 2D-ML method [4] (No. 1 in figure 3.1), where it is assumed that the detector
is thin and thus the response as a function of depth does not significantly vary.

3.2.1 2D Maximum likelihood position estimation

It was pointed out in section 2.3.1 that the light generated in a scintillator from
a gamma interaction is a non-Poisson process. For events which deposited an
energy E, the amount of light produced No(E) is distributed with a mean No(E)

and variance σ2
No

(E). Each of the photons then faces a binomial selection process:
it can either reach the mth photodetector or not. Suppose the fraction of optical
photons emitted from position R(x, y) that will reach the mth photodetector is
ηm(R), then the amount of scintillation photons Nγ impinging on the mth photo
detector
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Nγ(E) = No(E)× ηm(R) (3.2)

is a Poisson random variable, due to the fact that a low-efficiency binomial se-
lection of a non-Poisson random variable is a Poisson random variable, as it was
shown in (2.11).

Once a photon enters the mth photo detector, it will produce a photo electron
(or electron-hole pair in case of an APD) with a probability given by the quantum
efficiency QE. This process is Poisson process because a Poisson random variable
after a binomial selection is still a Poisson random variable [5] with mean

Nm(R, E) = QE · ηm(R) ·No(E) (3.3)

The probability of generating Nm photo electrons in the mth photodetector will
hence be [5]:

pr(Nm|R, E) =

[
Nm(R, E)

]Nm
Nm!

exp
[
−Nm(R, E)

]
(3.4)

Assuming the number of photo electrons generated in each detector are indepen-
dent to each other, the multivariate probability of the number of photo electrons,
{Nm,m = 1, · · · ,M} in all M photo detectors is given by

pr({Nm} |R, E) =

M∏
m=1

[
Nm(R, E)

]Nm
Nm!

exp
[
−Nm(R, E)

]
(3.5)

These photo electrons in a PMT (or electron-hole pairs in an APD) will then
be multiplied by the gain of the photo detector. If we ignore the noise gener-
ated in the photo detector (ENF) and readout electronics (ENC), which is an
acceptable assumption for PMT detectors, the distribution of the observed sig-
nals g = {gm,m = 1 · · ·M} of each photo detector can be seen as a multivariate
Poisson distribution:

pr(g|R, E) =

M∏
m=1

[
Nm(R, E)

]Nm
Nm!

exp
[
−Nm(R, E)

]
(3.6)

where

Nm ≡ u (gm/Gm) , andNm ≡ 〈gm(R,E)〉/Gm (3.7)
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〈· · · 〉 is an ensemble average, and u (· · · ) is a rounding operator, and Gm is the
channel gain. If, on the other hand, the amplifier and electronic noise are non-
negligible, e.g in case of an APD detector, then an independently distributed (i.d.)
normal model instead of a Poisson model is expected for each output signal gm
[47].

To characterize pr (g|R, E), we need to determine Gm and Nm. Calibrating
the gains Gm is a separate task. Assuming the gains Gm have been calibrated,
(3.6) then only depends on the Nm.

Calibration of Nm

The mean of each Poisson distribution Nm for the mth photon detector and for
a gamma ray impinging position (x, y) is obtained from by calibration data and
stored in a look-up table in order to characterize the response of the detector
for that position. To fully characterize the complete detector, the procedure is
repeated for many positions distributed over the surface of the block. This set
of positions is usually referred to as calibration positions. The mean response
of each photo detector pixel for gamma impact positions that were not in the
calibration set can be generated by interpolation of the look-up table. Hence the
look up table should be populated with a sufficient number of calibration positions
covering the whole crystal in order to have a good accuracy of interpolation.

Estimation of unknown events

When a new gamma photon impinges at an unknown position, one only knows
the set of 64 output signals gm from the detector. Given this set of measured
pixel responses and the scintillator calibration characteristics Nm, it is possible
to compute the likelihood (using (3.6)) that they were generated by an interaction
at any given position (x, y).

The position (x, y) that is most likely to have generated the measured response
(i.e. the maximum value for the likelihood or maximum likelihood estimate), is
then assumed to be the best estimate (

∧
x,
∧
y) for the true 2D impact position, i.e.

(
∧
x,
∧
y)
ML

= arg
(x,y)

max{pr(g|R, E)} (3.8)

However, calculating the likelihood for every position recorded in the look-
up table and some interpolated positions and finding the maximum value among
those likelihoods, is extremely time consuming. To avoid this exhaustive search
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Figure 3.2 – 2D-ML contracting-grid search. Figure from [33].

procedure, a method called contracting-grid search is sometimes used to find an
ML estimate [33]. Figure 3.2 shows an example of searching in 2 dimensions. In
each iteration, the likelihoods of 4x4 positions are calculated. The position with
the biggest likelihood is selected and a new set of 4x4 positions is chosen in a
smaller area around this position. This procedure is then repeated a number of
times. Assuming that e.g. 6 iterations are performed to achieve a good accuracy
[24], then 16x6=96 likelihood calculations are required.

3.2.2 3D-ML position estimation

Multiple interactions within the crystal will introduce uncertainties on the signals.
This influence can be ignored for thin crystals in the 2D-ML method. Since a 511
keV gamma ray is a rather high energy photon, the scintillation crystal used to
detect it needs to be thick. The Compton scattered events might need to be
modeled by additional parameters, which makes the model more complicated.
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One way to deal with these events is use hypothesis testing to reject them [4].
Therefore, the 3D-ML method deals mostly with single interactions, multiple-
interaction events should be filtered first. A method to perform this filtering is
detailed in [34].

For a thick scintillator, the distribution of the scintillation photons detected
by the pixellated photo detector also depends on the depth of interaction or DOI.
Hence the distribution of the signals measured by a given pixel when 511 keV
gammas are impinging at a fixed 2D entry position (x,y) is a continuous sum of
Poisson distributions with a mean varying according to the depth of the gamma
ray interaction. To estimate an interaction point including DOI, (3.6) is still valid
but with R(x, y, z) as a function of three dimensions.

One way to present the relationship of how Nm changes as a function of depth
of interaction is to choose an analytic form, such as a cubic polynomial [34]:

Nm(R, E,Θ) =

3∑
n=0

cmn(x, y) · zn (3.9)

The parameters Θ describe the set of coefficients cmn(x, y) as a function of
lateral position. Hence, for each of the given calibration positions (x, y), 4 param-
eters of the 3rd order polynomial need to be determined per pixel. Interpolation
is once more needed for un-calibrated position.

In reality, the depth of interaction (z) cannot be obtained directly. There-
fore prior knowledge of pathlength distribution is used to overcome this problem.
Figure 3.3 shows a gamma ray entering a monolithic block at known position
R0(x0, y0) and along a known direction s. The pathlength l is ideally expected
to be exponentially distributed. However, due to the fact that events are prefil-
terd to remove the multiple-interaction events in the scintillator [34], the filter
is not perfect and the detector geometry etc. also influence the distribution, it
is no longer exponentially. One has to rely on the simulation to determine the
pr(l|E,R0, s) [34].
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Figure 3.3 – A cross-sectional view of an obliquely incident gamma ray into a
thick scintillation camera.

To obtain Θ using a given data set Γ, which contains J events, one can re-
sort again to maximum likelihood using the prior knowledge of the pathlength
distribution. The estimated Θ is then given by

Θ̂ML = argmax
Θ

{pr (Γ|Θ)} (3.10)

where ([34, 33])

pr(Γ|Θ) =

J∏
j=1

∞̂

0

dl pr(l|Ej,R0j , sj)

M∏
m=1

pr
[
g|Nm (R0j + lsj , Ej ,Θ)

]
(3.11)

After calibrating the parameter set Θ and storing it into a look up table,
determining the interaction position of a new event is similar to the procedure
used in the 2D-ML case.

To calibrate the 4 times larger number of parameters, an enormous reference
data set is needed. In addition, the 3D positioning algorithm now also needs to
calculate 43 times instead of 42 likelihood functions in each iteration.

3.2.3 2D-ML+DOI clustering position estimation

Another group implemented a 2D-ML +DOI clustering position algorithm (No. 3
in figure 3.1) based on Gaussian signal distributions instead of Poisson. The idea
of DOI clustering is that the light distribution varies according to DOI, i.e. events
interacting in the same (x, y) position and in a similar DOI region will generate
alike light distribution patterns. For each of the DOI region in one calibration
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position (x, y) , two look-up tables for the mean and standard deviation of each
mth photon detector will be built. This algorithm therefore yields discontinues
DOI information. A flow chart of this algorithm for 7 DOI regions (interpolated
to 15 DOI regions) is shown in figure 3.4. More details can be found in [45, 47].

Figure 3.4 – Flow chart for 2D-ML+DOI clustering algorithm. From [45].

3.3 2D Entry Point Estimation

Instead of determining the 3D position (x, y, z) of an interaction point within the
crystal, some groups use an alternative way by extracting the 2D entry point
(x0, y0) when an annihilation photon enters the front surface of the crystal. As
shown in figure 3.5 (left), an LOR connecting from the entry point A on the sur-
face of a crystal is identical to an LOR connecting from the 3D interaction points
B within the crystal. Hence, knowing the entrance position can also be used to
correct for parallax error. However, there is a price to be paid for this appar-
ent reduction in the number of coordinates to determine. As shown in figure 3.5
(right), photons can enter the crystal at the same point A, but generated different
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light distributions because they interact at different points B1 or B2. Therefore,
the relationship between the measured light distribution and the incidence posi-
tion A also depends on the incidence angle θ and ψ . Because PET is based on
the detection of two co-linear photons by a ring of detectors, this information is
readily available to some extend. The incidence angle θ1, ψ1 and θ2, ψ2 of the two
photons on the crystal blocks can be approximately determined by the line joining
the center of those two crystal blocks. Hence, for each block pair combination
that can yield valid coincidences in a PET scanner, a single 2D entry positioning
algorithm can be used. If the size of the crystal is small compared to the radius
of the PET ring, the difference between the true incidence angle and the approx-
imated incidence angle is small. For example, if the blocks have a surface area
or 2x2 cm and the PET system has a ring diameter of 40 cm (i.e a brain PET
system), the maximum difference is 2.86o.

Figure 3.5 – An LOR can be defined by a pair of 3D coordinates of the interaction
position (e.g. B1or B2) or by a pair of 2D coordinates of the points where the
photons entered the crystal (point A).

3.3.1 L-nearest neighbor algorithm

One way to get the 2D entry point is by using a statistical nearest-neighbor
algorithm [64] (No. 4 in figure 3.1). Reference data sets are collected for different
surface entry points (x0, y0) and incidence angle θ (i.e. crystal block combination).
At each position and angle, the light distributions g of a number of reference events
are recorded in a large look up table. Before they are stored, the pixel values are
normalized to make the light distributions energy independent, i.e.

gnormm =
gm∑
gm

(3.12)
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The difference with the look up tables used in the ML-based methods is that
the values of the 64 pixel signals are stored for each recorded event. Previously,
only the mean (or the 4 parameters used for the cubic polynomial parameteriza-
tion of the DOI dependent mean) of the signal distribution was stored for each
detector pixel. Hence, the look up tables in the nearest neighbor algorithm are
much larger.

When an annihilation photon enters the crystal at an unknown position, the
reference data set corresponding to its incidence angle is selected. Then a least
squares comparison is made between the set of 64 signal values of the unknown
event and the signal sets of all the reference events in the selected reference data
set. A subset containing L reference events producing the smallest least squares
differences is retained. The most frequently occurring entry point (x0, y0) within
this subset, is then taken as the best estimate (x̂0, ŷ0) of the impact position of
the unknown event.

Although this method does not need to calibrate signal distribution parameters
such as mean or variance, it still needs a large amount of reference data to produce
good statistical estimates of the incidence position. Consequently, determining
the position of an unknown event is slow because it requires a huge amount of
least-squares comparisons.

3.3.2 Artificial neural network

Artificial neural networks or ANNs is another method that is used to estimate
the 2D entry point (x0, y0) [10] (No. 5 in figure 3.1). This method is not simply
comparing an unknown data set with reference data as in previous section. An
ANN represents a black box function, which expresses the relationship between the
measured photodetector signals g (ANN inputs) and the 2D entry point (x0, y0),
(ANN output) for a certain incidence angle θ. This black box function is composed
of so-called “neurons”, acting as non-linear transfer functions. These neurons,
divided over an input layer, one or more hidden layers and an output layer, are
connected by links which carry a weight. When a value travels from one neuron
to the next over a link, it is multiplied by the link weight. The weighted values
arriving at a neuron over all the links connected to its input are summed and
offset by a bias value that is a property of the receiving neuron, i.e. if the lth

neuron in a given layer is linked to K neurons in the previous layer, its input is
given by
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I l =

K∑
k=1

wk,l ·Ok + bl (3.13)

where wk,l is the link weight between the kth neuron in the first layer and the
neuron l, Ok is the output from the kthneuron and bl is the bias of neuron l.
The output of (3.13) is then passed through a nonlinear function such as e.g. a
sigmoid transfer function:

σ(x) =
1

1 + e−x
(3.14)

The resulting value is then sent over a new link to the next layer of neurons (figure
3.6). This process is executed for all neurons in the ANN except for the ’output’
neuron where the nonlinear function in (3.14) is not applied. In case of the ANN
with N inputs, and 2 hidden layers with resp. K and L neurons, the signal from
the neuron in the output layer is given by

L∑
l=1

wlo · σ

(
K∑
k=1

wkl · σ

(
N∑
n=1

wnk · In + bk

)
+ bl

)
+ bo (3.15)

where wnk are the link weights from the nth input neuron to the kth neuron in
the first hidden layer, bkis the bias of the kth neuron in the first hidden layer, wkl
are the link weights from the kth neuron in the first hidden layer to the lth neuron
in the second hidden layer, bl is the bias of the lth neuron in the second layer, wlo
are the link weights from the lth neuron in the second hidden layer to the output
neuron and bois the bias of the output neuron.

Before an ANN can be used, it has to undergo supervised training to find the
values of the link weights and biases. During the training process, the neural
network is presented with a sufficiently large set of inputs and the corresponding
outputs it should produce. The link weights and neuron offsets are adjusted such
that the root mean square error (RMSE) between the produced outputs and the
true outputs is minimal, i.e.

(wtrained, btrained) = argmin
(w,b)

√√√√√ N∑
i=1

(ANN(input|w, b)− output)2

N
(3.16)

Similar to the L-nearest neighbor method, the pixel values (i.e. inputs to the
neural network) are first normalized for energy using (3.12).
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Figure 3.6 – Structure of a neural network with K input neurons (yellow), 2
hidden layers with respectively L and N neurons (green) and one output neuron
(pink). Values are injected in the network through the input neurons and propa-
gated through the network over the links connecting the neurons in the different
layers. While they travel along a link, a scaling factor is applied. The inputs of the
neurons sum the weighted values and add a neuron dependent bias. This weighted
sum is then non-linearly transformed by a transfer function and the result is passed
on to the next layer. The output neuron has usually a linear transfer function.

Usually, two separate Neural Networks are build: one for the X and one for
the Y position. To further reduce the complexity of the ANN, the signals in the
rows and columns of the photo detector array are summed. The rational behind
this, is that changes in the x-coordinate are mainly reflected in the distribution
of the signals over the different columns, while the signals in the different rows
contain most of the information about the y interaction coordinate (figure 3.7). If
the summing of the row and column signals is done in the amplifiers chip reading
out the photo detector array, the number of electronic channels to digitize and
process is also significantly reduced. In case of an 8x8 photo detector array, the
number of channels is then reduced from 8x8=64 to 8+8=16, i.e. 4 times less
electronic channels.

Similar to the nearest neighbor algorithm, a pair of ANNs needs to be trained
for every crystal block combination in the PET system. The advantage however,
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Scintillation 
crystal

Vertical projection by summing 
the APD pixel signal in the 
same column

Horizontal projection by 
summing the APD pixel 
signal in the same row

APD pixel
Scintillation light 

distribution

Number of information channels is 
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NN for x-coordinate

NN for y-coordinate

8 inputs

8 inputs

Figure 3.7 – To simplify the readout electronics and the topology of the ANNs,
the rows and columns of the photo detector array can be summed. The summed
columns are used as inputs for the ANN trained to compute the x-coordinate,
while the summed rows are used as the inputs for the ANN trained to computed
the y-coordinate.

is that once the ANN are trained, they can very quickly compute the incidence
position of an unknown event. Processing speeds of up to 25 million events per
second have been achieved on an average computer. If needed, neural networks
can also be implemented in hardware using FPGA’s.

3.4 Parametric modeling method

All the methods mentioned above, except for the simple centroid method, require
the acquisition of reference data sets for calibration, comparison or training. This
can cause a problem if the measurement conditions have changed since the time
the reference data sets were collected. This could be because of e.g. changes in
the gain of photo detector pixels due to temperature or high voltage fluctuations.
To overcome this problem, one could try to extract the position directly from the
measured scintillation light distribution without prior calibration.

One research group developed an empirical parametric model that is used to
extract the 2D interaction position by fitting it to the measured light distribution
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(No. 7 in figure 3.1). The model they used is given by [46]:

Nm(x, y, a, b, γ) = a

(
1 +

(x− xi)2 + (y − yi)2

b2γ

)−γ
(3.17)

where Nm is the same as in (3.3), which is the mean of the Poisson variable
representing the number of photon electrons generated by the mth detector. xi
and yi are the coordinates of the ith pixel in the photo detector array. The
parameter ’a’ relates to the peak height of the light distribution, while ’b’ depends
on the width of the light distribution. The shape of the distribution can be
changed using the parameter γ. If γ → 1 the distribution becomes a Cauchy
distribution and if γ →∞, the model will converge to the Gaussian shape [46].

Comparing to the ML method in section 3.2.1 which uses a look up table
to represent all Nm, this method uses a general function to describe the Nm.
Therefore no calibration in x− y direction needs to be done.

The model is fitted to the light distribution using either MLE fitting or
weighted least square fitting. Once the 2D estimated position (x̂, ŷ) is obtained
using the set of best fit parameters (a,b,γ), the DOI still needs to be determined
separately because it was not directly included in the parametric model. In gen-
eral, the parameters a, b and γ are a function of the DOI. This fact is used to set
up an empirical relation between the DOI and the parameters a,b and γ [46]:

DOI(a, b, γ) = β0 + β1a+ β2b
2 + β3γ (3.18)

Before equation 3.18 can be used, the coefficients β0, β1, β2 and β3 should be
determined. This still has to be done through experimental calibration by shoot-
ing 511 keV events at a 45 degree angle onto the monolithic block. The DOI
position of an interaction was obtained indirectly. It is equal to the difference
4X between the coordinate x0 where it enters the LSO block and the coordinate
x where it interacts (figure 3.8). For each event, model 3.17 is fitted to the light
distribution. The best-fit parameters (a,b,γ) are then recorded together with the
approximate DOI position 4X. When a sufficient number of events are recorded,
the coefficients β0, β1, β2 and β3 are obtained by fitting (3.18) to the measurement
data.
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Figure 3.8 – When a photon impinges at a 45o angle, the DOI is equal to the dif-
ference between the interaction X-coordinate and the X-coordinate where it entered
the monolithic scintillator.

Because (3.17) is shift-invariant, it cannot take any edge effects (such as re-
flections) into account. Therefore, the monolithic scintillator blocks used in this
method are painted black on the sides to minimize the edge effects. However, one
of the consequences is that this will worsen the energy resolution due to lower
scintillation photon statistics.





Chapter 4

NLS Modeling Algorithm

In this chapter, we will model the light distribution corresponding to a gamma
ray interaction and use a nonlinear least square (NLS) method to estimate its
position. The goal is to obtain a high spatial resolution in X, Y and DOI direction,
only depending on the information embedded in the signals of individual events
without any prior training or calibration.

The introduction of regression and Least Square fittings will be given first in
this chapter, followed by the relation to Maximum Likelihood, Weighted Least
Squares and Least Squares. The description of the problem and the way it has
been modeled are in section 4.3 to 4.5. The minimization methods to estimate
the model parameters and the confidence intervals of the estimated parameters
will be discussed in the end of the chapter.

The evaluations of the method using simulations data and experiments will
be shown in Chapter 5. Comparisons with Cramér-Rao lower bound, Maximum
Likelihood and Neural Network Method will be performed in Chapter 6.

4.1 Introduction to regression and least square

Regression is the analysis of the relationship between a dependent variable y and
one or more independent variables x. This relationship is expressed by a “model”
with an adjustable set of parameters θ. Regression analysis can be used for
prediction of the dependent variables or for parameter estimation. The target of
prediction is to find a model to forecast future events based on known past events,
i.e. to predict the dependent variable before they are measured. In this case, the
goal is not to determine the best-fit values of parameters that define a model,

77
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but to generate a curve that one can use to interpolate unknown values. As for
parameter estimation, the parameters in the model that are of interest cannot
be measured directly. They can, however, be estimated from the measurable
independent and dependent variables. If the unknown relation between these
variables can’t be expressed in a linear way, then a nonlinear model should be
used.

One strategy to find the model’s best-fit parameters θ̂ is to use a least square
method, which minimizes the sum of the squared distances between the mea-
sured points (dependent values) and the values of the model at the corresponding
independent variable values, i.e.:

θ̂ = argmin
θ

N∑
i=1

(yi − y(xi|θ))2 (4.1)

where (xi, yi) are the measurement data values, and where y(xi) is generated
from the model evaluated using the parameters θ. N represents the number of
measurements.

To guarantee that a least squares approach works well, there are a set of
assumptions that the data should obey [55]:

1. The independent variable x is known exactly. Only the dependent variable
y is perturbed with additive, zero mean noise nyi :

yi = y(xi|θ) + nyi (4.2)

If both x and y are perturbed with errors, the problem becomes Total Least
Squares [32].

2. The additive perturbation y follows a known distribution, which is usually
assumed to be zero-mean Gaussian.

3. The scatters (the variance) all the way along the curve are assumed uniform,
which is called “homoskedasticity”, i.e. the “errors” have constant standard
deviation σ and are independent of x.

4. The observations are independent.

Assumption 3 is not always valid in practice. The standard deviation of the errors
can vary along the graph, which is called “heteroskedastic”. In this situation,
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an inefficient1 result will be obtained by minimizing the sum-of-squares because
points with larger deviations from the curve will have a bigger impact on the sum-
of-squares value. To treat all points equally, it is necessary to add an appropriate
weight wi to the different error terms in the sum-of-squares, i.e.

θ̂ = argmin
θ

N∑
i=1

wi (yi − y(xi|θ))2 (4.3)

This is called a Weighted Least Squares (WLS). It is not always easy to choose
the weights. If the noise variance σ2

i at each measurement i is known, and all
measurements are independent, then it is common to use wi = 1

σ2
i
. Hence, the

WLS becomes

θ̂ = argmin
θ

N∑
i=1

1

σ2
i

(yi − y(xi|θ))2 (4.4)

If the perturbation are correlated, then the weights becomes wi = C−1, where
C = cov(ny) is the covariance matrix of the measurement noise. However, a
covariance matrix can not present the full stochastic characterization of the noise
distortions, while the probability density functions (pdf) can. This brings us to
the Maximum likelihood method.

The Maximum likelihood method is determined using the joined pdf for the
data (y1, · · · yN ) given the parameter set θ: Pr (y1, · · · yN |θ). This pdf tells us
how probable it is that the data set {y1, · · · , yN} is observed, given a set of
parameter values. In reality, we are facing the inverse problem. Given some
observed data, find the set of parameters in the model which have most likely
generated this data set. This inverse function is called the likelihood function
L (θ|y1, · · · yN ) = Pr (θ|y1, · · · yN ). The estimation of the parameters is ( Bayes
rule [60]):

θ̂ = argmax
θ

L (θ|y1, · · · yN ) (4.5)

= argmaxPr
θ

(y1, · · · yN |θ)
Pr(θ)

Pr(y1, · · · yN )
(4.6)

1Efficiency: the asymptotic variance of the estimated parameter achieves the Cramér–Rao
lower bound.
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Because Pr(y1, · · · yN ) is independent of the parameters θ, so (4.6) becomes

θ̂ = argmaxPr
θ

(y1, · · · yN |θ)Pr(θ) (4.7)

This is a Bayes estimator, where Pr(θ) is the prior information about the param-
eter. In practice, this information is uaually not available. If we assume that the
prior is uniform distributed, an ML estimation is:

θ̂ = argmaxPr
θ

(y1, · · · yN |θ) (4.8)

= argmax
θ

Pr (ny1 , · · ·nyN |θ) (4.9)

4.2 The relation of ML, WLS and LS

A maximum likelihood method incorporates most statistical properties of the
measurements in a model. It can be shown that if an efficient estimator exists,
then the ML estimator is efficient[60]. Least Squares can be seen as a Maximum
Likelihood estimator when the error of the observations follow an independent
and identically Gaussian distribution. The following few simple manipulations
will show why this is the case.

Assume that each measurement data point yi has a measurement error nyi ,
which are independently and Gaussian distributed around 0. The probability of
the error distribution then equals:

f(nyi) = f(yi(xi|θ)) =
1√

2πσ2
i

exp

(
− 1

2σ2
i

(yi − y (xi|θ))2

)
(4.10)

where σi is the standard deviation of the ith error distribution. Since nyi are
independent of each other, the probability of the data set equals the product of
the probabilities:

f (ny1 , · · ·nyN ) =
N∏
i=1

1√
2πσ2

i

exp

(
− 1

2σ2
i

(yi − y (xi|θ))2

)
(4.11)

Maximizing (4.11) is equivalent to minimizing the negative of its logarithm,
which is [

N∑
i=1

(
1

2
log(2π) + log(σi) +

1

2σ2
i

(yi − y (xi|θ))2

)]
(4.12)
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If we now assume that all σi are equal, then minimizing (4.12) is equivalent
to minimizing (4.1). It can be concluded that least-squares fitting is equal to
maximum likelihood estimation if the measurement errors are independent and
normally distributed with constant standard deviation. This is true for both linear
and nonlinear models.

If we don’t impose the assumption that all σi are equal, then we obtain (4.4).
In this situation, the Weighted Least Squares using the weight wi = 1

σ2
i
is equiv-

alent to Maximum Likelihood [61].

4.3 Description of the problem

The detector used in this study consists of a 20 × 20 × 10 mm3 Lutetium Oxy-
orthosilicate (Lu2SiO5 or LSO) scintillator block coupled to two Hamamatsu
S8550 Avalanche Photo Diode (APD) arrays. The LSO crystal is polished on
all sides and wrapped in Teflon (figure 4.1). It is coupled to the APD surface
with Meltmount type 5870 (Cargille Laboratories Inc.). This optical coupling
compound was chosen because it is of a non-curing (i.e. thermoplastic) type.
Disassembling or reassembling of the LSO crystal and the APD arrays then be-
comes straightforward by heating the detector module up to 60oC. The particular
type of Meltmount was selected because it has a high transmission at wavelengths
above 400 nm, i.e. more than 90% for a 1.5 mm thick layer [37]. Its refractive
index µmeltmount equals 1.582. The APD arrays have an epoxy entrance window
with a µepoxy= 1.52, close to the refractive index of meltmount and consists of
8× 4 pixels, each measuring 1.6× 1.6 mm2 (figure 4.2).

Figure 4.1 – Assembly stages of the detector components

We define the origin of the coordinate frame as the central point along the
line inbetween the two APD arrays. The coordinates for the central point of the
mth pixel are given by (xm, ym). For each gamma ray interaction, we measure
the signal gm in each of the 64 pixels. The problem can then be defined as
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Figure 4.2 – Layout of the APD pixels in the two adjacent S8550 APD arrays
(dash lines) used to read out the 20x20x10 mm LSO block (solid line).

finding a function F (xm, ym|θ) which predicts the signal detected by the APD
pixels, given a set of adjustable parameters θ that includes the 3D gamma ray
interaction position (x, y, z) within the crystal. The (xm, ym) are the independent
variable, gm are the dependent variables. Finding the values for the parameter
set θ such that F (xm, ym|θ) is as close as possible to the measured signals gm
is done by fitting the model F through the 64 data points using either a least
squares procedure:

θ̂ = argmin
θ

64∑
m=1

(gm − F (xm, ym|θ))
2 (4.13)

or a weighted least squares procedure, assuming that the number of photons
seen by an APD pixel follows a Poisson distribution and ignoring electronic noise
contributions to the signals:

θ̂ = argmin
θ

64∑
m=1

(gm − F (xm, ym|θ))
2

F (xm, ym|θ)
(4.14)

Finding the model function F is the crucial point for all estimation methods. If
no general function F exist, the least square method will not work. Then each
data point needs to be treated separately as it has been done in section 3.2 for
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the 3D ML method, where a look-up table had to be built for this reason. If a
model function F can be found, fitting the parameters becomes much easier by
minimizing the LS/WLS objective function using nonlinear iterative optimization
methods (e.g. Levenberg-Marquardt) or using a boundary constrained search,
which will be discussed in section 4.6.

4.4 Light distribution model F (xm, ym|θ)

To find the general light distribution model F , we first have a look how the optical
photons travel within the crystal. To simplify the problem, only photons which
reflect maximum one time on each side of the surfaces are considered.

Scintillation photons produced at the interaction site inside an LSO block,
wrapped in Teflon on 5 sides, can travel to the photo detector pixels along different
paths (figure 4.3):

1. Optical photons are emitted directly towards the bottom surface of the LSO
block.

2. Optical photons reach a pixel after internal reflection on a surface. In case
of polished surfaces, these mirror-like reflections behave like if there is a
virtual light source at a symmetric position on the other side of the surface.

3. Optical photons exit the block at the side or top, undergo diffuse reflection
on the Teflon layer and re-enter the crystal at a random direction. These
optical photons contribute to the background signal. They only add to the
total energy measured (and hence to the energy resolution) but contain no
spatial information anymore.

Given the above physical argumentations, we propose a model F that is com-
posed of three parts:

1. A term f corresponding to the optical photons directly impinging on the
pixel.

2. Additional virtual light sources (represented by an identical term f as in 2),
mirrored around the surfaces to take internal reflections into account.

3. A constant Cest that is mainly due to the reflection of the optical photons
on a diffuse reflector (e.g. Teflon) surrounding the scintillator block.
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Figure 4.3 – Schematic drawing of the direct detected scintillation light (1) and
the internally reflected light in a polished LSO crystal wrapped in Teflon on 5 sides
(2). The latter is represented by virtual light sources mirrored around the edges
(3). Optical photons can also reach a pixel after loosing all information about the
point of origin in a diffuse reflection on the external Teflon layer (4).

The signals measured by the APDs are proportional to the number of scintillator
photons and hence

F (xm, ym|θ) = Cest + f(x− xm, y − ym, z) +
∑
j

f(sxj − xm, s
y
j − ym, s

z
j ) (4.15)

where sxj , s
y
j and szj are the coordinates of the virtual source mirrored around the

jth side surface of the block.

4.5 The direct or virtual source term f(x, y, z)

One of the choices for the term f in model (4.15) is based on the assumption
that the detected signal in a pixel is proportional to the solid angle Ω subtended
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by that pixel seen from the source location. The signal produced by a pixel is
computed by multiplying the number of photons arriving on that pixel with a
constant factor A0, which takes both the total amount of produced scintillation
light, the APD gain and the amplifier gain into account, i.e.

f = A0 × Ω (4.16)

4.5.1 Exact solid angle based model

Considering the geometry in figure 4.4, the solid angle seen from a point source
S1 located at a distance d straight up from one corner of a rectangular shaped
pixel with length a and width b, is given by [27]

Ω = arctan

[
ab

d
√
a2 + b2 + d2

]
(4.17)

When the projection of the source is located outside of the pixel, as S2 in
figure 4.4, the solid angle can be written as a linear combination of four other
solid angles, each of them similar to (4.17). The formula for the solid angle then
becomes

ΩS2−9456 = ΩS2−1357 − ΩS2−1348 − ΩS2−1267 + ΩS2−1298 (4.18)

where ΩS2−9456 indicates a solid angle subtended by an area, whose four corners
are points 9, 4, 5 and 6, as seen from the point source S2.

Figure 4.4 – The relative position of point sources at S1 and S2, positioned at a
distance d above a rectangular detector of length a and width b.
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The solid angle subtended by a pixel with dimensions (dx, dy) at position
(xm, ym), as seen from the interaction position (x, y, z), can thus be written as

Ω = arctan

 (x− (xm − dx/2))× (y − (ym − dy/2))

z ×
√

(x− (xm − dx/2))
2

+ (y − (ym − dy/2))
2

+ z2


− arctan

 (x− (xm − dx/2))× (y − (ym + dy/2))

z ×
√

(x− (xm − dx/2))
2

+ (y − (ym + dy/2))
2

+ z2


+ arctan

 (x− (xm + dx/2))× (y − (ym + dy/2))

z ×
√

(x− (xm + dx/2))
2

+ (y − (ym + dy/2))
2

+ z2


− arctan

 (x− (xm + dx/2))× (y − (ym − dy/2))

z ×
√

(x− (xm + dx/2))
2

+ (y − (ym − dy/2))
2

+ z2

 (4.19)
4.5.2 Approximate solid angle based model

If we assume that the distance from the source to the center of each pixel is large
compared to the size of the pixel, then we can write an approximate solid-angle
function

Ω = dx× dy × z(
(x− xm)

2
+ (y − ym)

2
+ z2

)3/2
(4.20)

where dx and dy are the width and length of one pixel (both 1.6 mm in our
geometry). The above condition is not satisfied when the interaction point is very
close to the crystal bottom. To check the error made by this approximation, the
solid angle subtended by two neighboring pixels at positions (0, 0) and (2.3, 0)
was computed using (4.19) and (4.20) for two different light source positions A
and B (figure 4.5). Light source B at position (-10, 0, 5) is far away from the
pixels. In this case the numerical results from (4.19) and (4.20) were identical. On
the other hand, light source A at position (0, 0, 1) is very close to the pixels. The
numerical result for the approximate solid angle subtended by pixel (0, 0) is 59.6%
more than the value found for the exact solid angle. But the difference between
the results obtained from (4.19) and (4.20) for the neighboring pixel at (2.3, 0) is
already significantly reduced to 9.9 %. Hence, only inaccurate approximate solid
angles (4.20) will be found when the interaction is very close to the bottom part
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of the LSO block and only for the pixel directly underneath. The other 63 pixels
yield values that are accurate enough to produce an excellent overall accuracy.

Figure 4.5 – Two example sources A, B and two pixels.

4.5.3 Extended approximate solid angle in the model

In (4.16), we made the following implicit approximations:

• Absorption and scattering of optical photons in the block along its path
is negligible and when internal reflections occurs, they behave like 100%
specular reflections.

• The internal reflections at the bottom surface are not considered, i.e. all
optical photons arriving at the bottom surface leave the scintillator block.

• Each pixel always receives a contribution from all virtual sources

The last two approximations can be removed by extending the solid angle model
to take internal reflection into account. Only optical photons emitted towards the
bottom surface within a cone with an opening angle smaller than the critical angle
of 55.5o, determined by the LSO-Meltmount interface, can immediately leave
the block. The Meltmount-APD interface can be neglected since their refractive
indices are nearly the same. The previous two models did not take the effect of
internal reflections at the bottom surface into account. This effect is modeled by
adding a cut-off factor to the term f(x, y, z), which becomes zero when the angle
between the bottom surface normal and the line connecting the scintillation light
source with the pixel center is larger than the critical angle of 55.5o.

The two previous models also assumed that every APD pixel detects optical
photons arriving after internal reflection on the side surfaces, i.e. the four virtual
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sources are always present for a given pixel. This is not always the case. For some
indirect optical paths, arriving at a given pixel after hitting a side surface, the
angle with the normal of that side surface is less than the critical angle of 33.3o

for an LSO-air interface. Optical photons traveling on this path would hence exit
the crystal at the side instead of being internally reflected towards the given APD
pixel, i.e. there is no virtual light source at that side of the block for that pixel.
Adding a similar cut-off factor to the terms f representing the virtual sources in
(4.15) removes the contribution of the non-existing virtual sources to the APD
pixel signal.

The constrained minimization algorithm used (see section 4.6) requires a con-
tinuous objective function [17]. The cut-off factor, to describe the crossover from
the refractive regime into the reflective regime, is therefore added into the func-
tion f(x, y, z) using a sigmoid function. In case of the approximate solid angle, f
becomes

f = A0 × Ω× σ (θc − θ)

= A0 ×
z(

(x− xm)
2

+ (y − ym)
2

+ z2
)3/2
× 1

1 + e−β×(θc−θ)
(4.21)

where

θ = arctan


√

(x− xm)
2

+ (y − ym)
2

z

 (4.22)

is the angle between the line from the light source to the detector pixel and the
bottom surface normal, θc is the critical angle for the bottom surface and the
smooth factor β determines the transition gradient between the two regimes. We
found that the value of β is not very critical and set β = 1

100o in our model.

4.6 Minimization methods

For each event, the 3D interaction position (x, y, z), the term A0 and the back-
ground parameter Cest are estimated by fitting model (4.15) using either a LS
(4.13) or WLS (4.14) method. A boundary constrained minimization method
should be used, since x̂, ŷ, ẑ should be within the physical boundaries of the crys-
tal and both Cest and A0 should be non-negative. To simplify the problem, we



4.6. MINIMIZATION METHODS 89

will first discuss the linear least squares problem, and then the unconstrained non-
linear minimization problem [56, 26, 60, 66], followed by the bound-constrained
problem.

4.6.1 Linear problem

A linear least squares problem can be stated as:

argmin
θ
||Y −Xθ||2 (4.23)

where Y are the dependent variables, and X are the independent variables,

Y =


y1

y2

...
ym

 , X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 , θ =


θ1

θ2

...
θn


The solution of (4.23) is [60]:

θ = (XTX)−1XTY (4.24)

4.6.2 Unconstrained minimization

The general unconstrained minimization problem has a simple mathematical for-
mulation :

argmin
θ

f (θ) (4.25)

Here we assume that f (θ) is a smooth function, i.e. whose second derivative
exists and is continuous.

There is no such solution as (4.24) existing for a nonlinear problem. Therefore,
iterative searching algorithms are needed to minimize a nonlinear problem. The
basic idea of iterative searching is that, at the kth iteration, a new solution θ(k+1)

is generated by

θ(k+1) = θ(k) + δθ(k) (4.26)

where δθ(k) is chosen in such a way that it lowers the value of the objective
function f(θ). The iterative procedure continues until it has converged, i.e. θ(k)

is sufficiently close to the optical solution θmin of f .
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Two main techniques to generate δθ(k) are line search and trust region search.
Based on these two strategies, various methods exist such as Newton’s method,
which is a line search method, and Levenberg–Marquardt algorithm, which is a
trust region method.

Line Search methods

In line search algorithms, (4.26) becomes

θ(k+1) = θ(k) + α(k)p(k) (4.27)

where α(k) is the step length, determined to achieve the optimal solution along
the direction p(k). The direction p(k) is required to be a descent direction of f(θ)

at θ(k), i.e. pTk∇f(θ(k)) < 0 where

∇f (θ) =


∂f(θ)/∂θ1
∂f(θ)/∂θ2

...
∂f(θ)/∂θn

 (4.28)

This guarantees that the function f(θ) can be reduced along this direction.
Once the descent direction p(k) is chosen, the step length α(k) should be de-

termined along the descent direction. One possibility among several ways to find
a step size α(k) is the Armijo Rule [66]:

Let s > 0 be a constant, ρ ∈ (0, 1) and µ ∈ (0, 1) . Take α(k) to be the largest
α in {s, sρ, sρ2, . . .} such that

f(θ(k))− f(θ(k) + αp(k)) ≥ −αµpTk∇f(θ(k)) (4.29)

Trust region methods

The idea behind a trust region method for unconstrained minimization is that, in
a neighborhood of the current point θ(k), a simpler function, usually a quadratic
model qk(θ), is used to approximate the objective function in that neighborhood.
The step is then chosen to be the minimizer of this approximate model in this
region. This neighborhood region is called trust region. In fact, contrary to the
line search method, the step and direction are obtained simultaneously.

At each of the iterations in the trust-region method, the following subproblem
need to be solved:
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p(k) = minqk(θ) = f(θ(k)) +∇f(θ(k)) · p+
1

2
p ·B(k)p (4.30)

subject to ||p|| ≤ 4(k) (4.31)

where the quadratic approximation qk(θ) is defined by the first two terms of the
Taylor approximation to f(θ(k) + p), 4(k) is a trust region radius and B(k) is a
symmetric approximation to the local Hessian matrix H(k), where

H (θ) = ∇2f (θ) =


∂2f(θ)
∂θ21

∂2f(θ)
∂θ1∂θ2

· · · ∂2f(θ)
∂θ1∂θn

∂2f(θ)
∂θ2∂θ1

∂2f(θ)
∂θ22

· · · ∂2f(θ)
∂θ2∂θn

...
...

. . .
...

∂2f(θ)
∂θn∂θ1

∂2f(θ)
∂θn∂θ2

· · · ∂2f(θ)
∂θ2n

 (4.32)

Figure 4.6 illustrates an example of a trust-region approach and a line search
approach on a function f in which the current point θ(k) and the optimal solution
θmin lie at opposite ends of a curved valley. A line search method searches along
its descent direction and the step length αk. For the trust region method, the
step direction is obtained at the same time by minimizing (4.30), the step size is
restricted by 4.31 within the dotted circle.

4.6.3 Bound-constrained optimization

The bound constrained optimization problems have the general form of

argmin
θ

f(θ)

subjected to

l ≤ θ ≤ u

where f (θ) is a smooth function, The lower and upper bounds on the variable
θ are given by l and u. The feasible region is often called a “box” because of its
rectangular shape.

Several methods have been proposed to solve this problem. The two main
methods are active set Sequential Quadratic Programming (SQP) and interior
point methods [56].

This thesis will use the trust region reflection method, which is also a kind
of interior point method, available in the MATLAB optimization toolbox. This
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Figure 4.6 – An illustrative example of trust-region and line search step. The
objective function f has the optimal solution θmin, and the current point is at θ(k).
A line search method searches along its descent direction and the step length αk.
For the trust region method, the step direction is obtained at the same time by
minimizing (4.30), the step size is restricted by 4.31 within the dotted circle. Figure
from [56].

method was called as a kind of “interior-point” method because the estimates in
each iteration is strictly feasible. The essential difference with the classic interior
point methods is that the classical methods use a barrier function to ensure feasi-
bility. The algorithm used follows a piecewise linear path, reflecting back as they
come across the constraints.

A reflective transformation from the original θ space to another β space, where
θ = R(β) and R is a continuous mapping, is used to guarantee the feasibility. The
constrained problem in θ space becomes an unconstrained problem in β space,
and therefore a standard descent direction searching method can be used in β

space. The condition to guarantee that a local minimizer in β space is also a local
minimizer in θ space is that the reflection R has to be a so called Open Mapping2

(Proven in [18]).

2Open Map is a continuous linear operator, which is surjective between Banach spaces.
An operator f : X → Y is a surjective operator if and only if for every y in Y there is at least

one matching x in the domain X, such that f(x) = y.
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The reflective transformation θj = R(βj) proposed by [17] is:

Case 1 :(lj > −∞, uj <∞) upper and lower bound :

wj = |βj − lj |mod [2 (uj − lj)] , θj = min (wj , 2 (uj − lj)− wj) + lj

Case 2 :(lj > −∞, uj =∞) lower bound :

if βj ≥ lj , θj = βj , else θj = 2lj − βj
Case 3 :(lj = −∞, uj <∞) upper bound :

if βj ≤ uj , θj = βj , else θj = 2uj − βj
Case 4 :(li = −∞, ui =∞) unbounded

unconstraint

where j is the index of the jth dimension in θ.
An illustration of a 1-dimensional reflective transformation with finite upper

and lower bound is given in figure 4.7.
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Figure 4.7 – A 1-Dimensional reflective transformation example with finite lower
and upper bound of respectively of 4 and 6. [17]

4.6.4 Initial value and local minima

A numerical searching algorithm for nonlinear optimization problems usually seeks
only a local solution, where the objective function is smaller than its nearby points.
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This might not be the global solution over all feasible points. Good initial guesses
of the starting values are therefore extremely important in order to reach the
global minimum of the cost function.

In our search, the initial value of X and Y are set to the coordinate of the
center of the pixel that produced the biggest signal. The initial value of the DOI
coordinate z is set to the average depth of the first interaction of a 511 keV photon.
Given a mean free path (MFP) of 11.3 mm in LSO, this yields an initialization
value of 4.2 mm. The initial value of the background constant Cest is set to the
average of the 10 to 15 smallest APD pixel values. The initial value of parameter
A0 is set to 0.8, assuming that the 64 APD pixel signals have been normalized
for energy, i.e. each pixel value is divided by the sum of the 64 pixels.

4.7 Confidence intervals

Knowing the best-fit parameter is not the only goal of a regression. It is also
important to know the precision of the estimated parameters. This is presented
as confidence intervals (CI) (or standard errors). A 95% CI is an interval that has a
95% chance of containing the true value of the parameter. There are normally two
ways to compute the CI: an asymptotic method, which is used in most nonlinear
regression programs, and a Monte Carlo method.

4.7.1 Asymptotic method

Using the asymptotic method, a CI can be computed from the best-fit value θ̂, the
standard errors of the estimated parameters σθ, and the Student’s t-distribution
with v degree of freedom using the equation:

θ̂ + [−σθ × t(1− α/2, v), σθ × t(1− α/2, v)] (4.33)

where v is equal to the number of data points minus the number of parameters
fit by nonlinear regression and α equals the percentage of the CI. The term t(1−
α/2, v) is a constant, which is near 2.0 when there are plenty of degrees of freedom
(more than a dozen).

The CI computed using these errors should also be considered approximate
since the standard errors of the estimated parameters returned by most nonlinear
regression programs are “approximate”.

The problems with asymptotic confidence intervals computation is:
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1. The intervals are always symmetrical, as we can see in (4.33).

2. The computation is based on a mathematical simplification and it is only
an approximation for nonlinear equations. Only when there are plenty of
data that clearly define the curve without a huge amount of scatter, the
approximation for the confidence intervals gives a good indication on the
precision of the estimates. With marginal data, the approximation doesn’t
always work so well [55].

Those issues are the reason that a standard CI checking is not performed in this
thesis. Since in each fitting, we only have 64 data points. In addition, it has been
found that CI estimations are unstable for data close to the boundary, i.e, when
gamma ray interaction close to the boundary of the crystal.

4.7.2 Monte Carlo method

The idea of Monte Carlo confidence interval calculation is to self generate a bunch
of (e.g.1000) data sets, using the same independent x value and the same model
with the “best-fit” parameters. Then different fluctuations on those simulated
ideal data are added. The fluctuation obeys a zero-mean Gaussian distribution
with a standard deviation which is estimated from the residuals of a previous
fitting. Then each simulated data is used to estimate the parameters. Finally,
the distribution of parameter estimators create the confidence intervals.

This method is not realistic in our case in a real system. For example, in a
BrainPET scanner, up to 400.000 coincidences happen per second [50]. If the CI
bound has to be computed for the estimated interaction position of each of these
events, 400.000.000 simulated events would need to be generated and fitted in a
single second.

Therefore, no CI bound are generated to check the parameter fitting in this
thesis, i.e. all results are accepted to generate a final spatial resolution.





Chapter 5

Model Evaluation

In this chapter, the models described in Chapter 4 will be evaluated using simula-
tion and experimental data. The initial values of the model parameters have been
discussed in section 4.6.4. For X and Y, the initials are set to the coordinate of the
center of the pixel that produced the biggest signal and for the DOI coordinate,
the inital value is set to the average depth of the first interaction of a 511 keV
photon. The initial value of the background constant Cest is set to the average of
the 10 to 15 smallest APD pixel values. The initial value of parameter A0 is set
to 0.8, assuming that the 64 APD pixel signals have been normalized for energy,
i.e. each pixel value is divided by the sum of the 64 pixels.

When not specified, the resolutions stand for “global resolution”, which is the
FWHM and FWTM obtained from one single error histogram generated by all
events over the entire crystal surface. In both simulation and experiment, the 511
keV gamma beam pitch equals 0.5 mm in both the X and the Y direction.

5.1 Detector setup description

The detector used in this study was introduced in section 4.3. Here we add some
more details of the set-up used to generate the experimental data.

Each of the 64 APD pixels is equipped with its individual readout chain con-
sisting of a CREMAT CR-110 front-end preamplifier, a CAEN N568B spectro-
scopic amplifier channel (16 channels/module), and a CAEN V785 peak sensing
ADC channel (32 channels/module) (figure 5.1). A homemade circuit provides
the analog sum of the 64 channels to yield the total energy of an event. The front-
end part of the readout, i.e. the scintillator, the APD arrays and the CREMAT

97
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pre-amplifiers are enclosed in an air and light-tight box, cooled to a temperature
of 18± 0.6 oC by a flow of cold liquid from a cooling unit.

Figure 5.1 – Schematic diagram of the experimental set-up and data acquisition.

The detector characteristics are given in table 5.1. The average detection
quantum efficiency (DQE) of the S8550 APD arrays was computed using the LSO
emission spectrum [20], the Meltmount transmission curve [38] and the APD QE
curve [54]. The excess noise factor (ENF) of the APD arrays was also reported
in [54]. The operational APD gain of about 85x, was estimated by comparing
the output signals relative to those obtained at a gain of 50x. The high voltage
that needs to be applied to the APD arrays for a gain of 50x was specified by
the manufacturer. A measurement on a large number of the APDs used in this
study, showed a pixel gain variation of 4.6 % FWHM [1]. The Pre-amplifier
ENC is measured using the same way as in [48], where the electronic noise was
determined from the RMS on the analog signal going into the ADCs. To convert
the RMS voltage fluctuation to an equivalent noise charge (ENC) at the input
of the Cremat pre-amplifiers, the gain of the readout channel was calibrated by
injecting a known charge signal into the input of the pre-amplifiers.

Three of the 64 channels (channels 17, 26 and 64 in figure 5.2) were dead or
damaged . These were not used when minimizing the cost function (4.13) and
(4.14) to determine the 3D interaction position.
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Parameter Value

APD DQE 70.4 %
APD gain 85 x
APD ENF 1.75

Pre-amplifier ENC 1800 e− RMS

Table 5.1 – Detector parameters.

Figure 5.2 – Three of the damaged channels

5.2 Simulation analysis

5.2.1 Generation of Monte Carlo modeling data

Monte Carlo simulations of the detector were performed using GATE [35]. The
light yield of the LSO scintillator was set at 26,000 optical photons/MeV [21].
The total attenuation length was set to 138mm[53]. The surface condition of the
LSO block is modeled using micro-facets according to the UNIFIED model [25].
The normals to the micro-facets are randomly distributed with a mean of 0 and
standard deviation of σva, i.e. σva =0 means a perfectly polished surface. We use
σva= 0.1o for the polished surfaces in our simulations [14]. The diffuse reflection of
the Teflon surrounding the LSO block was characterized by a reflection coefficient
of 95%.

Scintillation light distributions measured by the matrix of APD pixels were
simulated for 511 keV photons impinging on top LSO surface on a rectangular
grid of beam positions (0.5 mm pitch in both x and y direction) covering the
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complete surface. The 511 keV photon beam was assumed to be perfect, i.e. no
influence of a finite beam size was included in the simulation.

Adding detector and readout induced noise

The GATE Monte Carlo simulation did not take the influence of the APD DQE,
the APD gain, the APD excess noise factor and the pre-amplifier noise into ac-
count. An additionally normally distributed random number with standard devi-
ation σde is therefore added onto the simulation data. Hence, the total simulated
pixel signal variance equals

σ2
total = σ2

Nγ + σ2
de (5.1)

where Nγ is the simulated number of the scintillation photons impinging on a
single photo detector.

Suppose the fraction of optical photons emitted from the gamma ray inter-
action that will reach the mth photo detector pixel, ηm(R), is small. As has
been discussed in 2.3.1 and 3.2.1, this small fraction makes that Nγ is Poisson
distributed, because a low-efficiency binomial selection of a non-Poisson random
process is a Poisson random process [5]. Hence

σ2
Nγ = Nγ (5.2)

Substituting (5.2) in (2.17), we can write the inverse of the signal-to-noise
ratio (SNR−1) of the signal generated by the mth photo detector pixel as

SNR−1
output =

σ

E
(5.3)

=

√
ENF

QE × CE ×Nγ

+

(
ENC

G×QE × CE ×Nγ

)2

Since SNR is unit free, we can use it to compute an equivalent noise level at
any stage of the readout chain, expressed in the unit of the signal at that level.
If we apply this to the APD pixel level, we can express the total noise as an
equivalent fluctuation on the number of optical photons hitting a pixel, i.e.

σAPDtotal = Nγ · SNR−1
output (5.4)

Using expression (5.3), equation (5.4) becomes
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σAPDtotal = Nγ

√
ENF

Nγ ·DQE
+

(
ENC

Nγ ·DQE ·G

)2

(5.5)

with DQE = QE × CE the APD detection quantum efficiency. Assuming Nγ

can be approximated by Nγ , the detector and electronic related noise components
σde can now be expressed in an equivalent number of optical photons hitting the
APD pixel using (5.1) and (5.5)

σde =
√

(σAPDtotal )2 − σ2
Nγ

=

√
ENF ·Nγ
DQE

+

(
ENC

DQE ·G

)2

−Nγ (5.6)

This expression for σde is finally used to simulate the detector and electronic
related noise contribution which is added to the simulated number of optical
photons hitting a pixel. The values for DQE, CE, ENF, G and ENC are the same
as those shown in table 5.1.

After adding the detector and electronic noise, only events that cross an energy
threshold of 350 keV were accepted. For these events, the predicted X, Y and
DOI position was compared with the true interaction point in the LSO block.
The FWHM and FWTM of the distribution obtained by the difference between
the predicted and true coordinates was used to define the resolution.

5.2.2 Solid angle model and parameter fitting procedure

Table 5.2 shows the FWHM and FWTM resolutions in both X, Y and DOI direc-
tion. Using an exact or approximate solid-angle calculation yields similar results.
Because most of the interactions occur in the upper part of the LSO block, where
there is no numerical difference between the pixel signal values computed using
(4.19) and (4.20), the difference between the results obtained with the two solid-
angle models is small. However, the approximate solid-angle model is simpler to
compute and hence results in shorter execution times (about 30% faster).

A comparison of the LS (4.13) and the WLS (4.14) parameter fitting methods
shows that the achieved X-Y resolutions are similar. The LS fitting of the DOI
coordinate is slightly better. It is not surprising that WLS does not perform better
since the premise to use WLS (i.e. observables should be Poisson distributed) is
not fulfilled due to the influence of ENF and the ENC.
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Parameter
fitting
method

Ω model
X-direction Y-direction DOI-direction

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

Bias
(mm)

LS Exact 1.14 3.84 1.21 4.41 1.84 5.93 0.45
LS Approximate 1.13 3.98 1.20 4.41 1.91 5.79 0.40

WLS Exact 1.16 3.95 1.28 4.20 2.15 6.37 0.60
WLS Approximate 1.16 3.98 1.27 4.20 2.23 6.36 0.54

Table 5.2 – Solid angle versus approximate solid angle.

Using (5.6) and the parameters in table 5.1, it follows that the electronic noise
dominates when the number of optical photons hitting an APD pixel is less than
340. The distribution of the optical photons over the APD pixels was studied
Using simulation data. For each event, the number of optical photons impinging
on each pixel was sorted from high to low. This resulted in 64 data sets, i.e a set
of the biggest signals, second biggest signals and so on.

Figure 5.3 shows the mean of each of these data sets. The number at ordinate
value 1 corresponds to the pixels receiving the most photons whereas ordinate
value 64 correspondence to the smallest number of photons receive on a pixel.
The distribution shows that most of the useful signals in a scintillation flash
are measured by 5 to 10 pixels. On average they receive 100 to 300 optical
photons. This corresponds to a signal of 6000 to 19000 electrons at the input of
the preamplifier. This is to be compared with a noise level of 1800 electrons ENC.

The photon distribution levels off to a slowly decreasing trend for the remain-
ing pixels. On average 40 to 60 optical photons will hit these pixels, resulting in
an electronic signal of 2400 to 3600 electrons.

All models and fitting procedures also introduced a bias (i.e. a systematic
error) on the predicted DOI. On average the interaction position was estimated
0.4 to 0.6 mm closer to the bottom of the LSO block than the true interaction point
due to multiple interactions. On average, the estimated X-Y position coincides
with the true one, i.e. there is no global detectable bias on the coordinates in the
X-Y plane. The local response (resolution and bias) is detailed in section 5.2.8.

Given these results, we will continue to use the approximate solid angle model
and LS fitting for all the remaining results.
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Figure 5.3 – Average number of optical photons impinging on the APD pixels as
a function of the pixel order.

5.2.3 How many mirror sources are needed?

Optical photons emitted at the interaction site of a 511 keV gamma ray can reach
an APD pixel via a direct path or after a reflection on one of the 5 sides of the
LSO block. Internal reflections are modeled using mirror sources. Table 5.3 shows
the impact of adding these internal reflections in the model.

When 4 mirrors sources are placed around the side surfaces, nearly all resolu-
tions improve. Especially the FWTM resolutions are significantly enhanced.

Adding an additional fifth mirror source above the upper block surface, has lit-
tle effect on the FWHM resolutions. This indicates that optical photons reflected
on the top surface and reaching the APD pixels don’t add significant information
to enhance the extraction of the interaction positions.

It should also be noted that adding the virtual sources in the model increases
the bias in the DOI estimate slightly. It should also be noted that adding the
virtual sources in the model increases the bias in the DOI estimate slightly. This
is due to the fact that the critical angle was not taken into account in the model.
This makes that for some of the pixels, the model assumes that the photons are
coming from the direct source and the mirror sources, but in fact they are only
coming from the direct source. As a result, the model assumes the shape of light
is actually narrower than in reality, which causes the DOI estimation to have a
bias towards the bottom.
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Ω model
X-direction Y-direction DOI-direction

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

Bias
(mm)

no mirror source 1.21 5.02 1.39 5.36 1.84 6.86 0.21
4 mirror sources 1.10 3.98 1.20 4.41 1.91 5.79 0.40
5 mirror sources 1.13 4.31 1.19 4.27 2.09 6.45 0.50

Table 5.3 – Resolutions when using a model with no virtual sources, 4 virtual
sources or 5 virtual sources.

5.2.4 Influence of detector noise level

To investigate the influence of the ENC on the achievable resolution, simulation
studies were performed using different noise levels. Table 5.4 shows the X, Y
and DOI resolution as well as the energy resolution as a function electronic noise
(ENC expressed in electrons at the input of the preamplifier). The intrinsic X-
Y resolution can be improved by 0.2-0.3 mm FWHM when the ENC is reduced
from 1800 electrons to 600 electrons. The DOI resolution improves by 0.6 mm
FWHM for a similar reduction of the electronic noise level. The energy resolution
improves from 18.2% to 13.1%. Lowering noise levels below 600 electrons ENC
does not seem to have a significant additional effect on the resolutions.

ENC
(electrons)

X-direction Y-direction DOI-direction
∆E
(%)FWHM

(mm)
FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

Bias
(mm)

300 0.77 2.62 0.83 2.70 1.34 3.94 0.35 12.9
600 0.78 2.82 0.99 2.70 1.39 4.42 0.37 13.1
1200 0.91 3.20 1.06 3.23 1.69 5.10 0.39 15.2
1800 1.10 3.98 1.20 4.41 1.91 5.79 0.40 18.2
2100 1.20 4.24 1.71 4.16 2.05 6.65 0.43 19.5

Table 5.4 – Spatial and energy resolution as a function of the electronic noise level.

5.2.5 Extended approximate solid angle model

Table 5.5 gives the FWHM and FWTM when critical angles are included in the
approximate solid angle model. Although this extended model is more realistic,
the achieved DOI resolution is worse compared to those in table 5.2. The X-Y
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resolution is also slightly worse. This seems to indicate that the problem lies
with the model fitting. To study this problem, APD pixel signals were generated
using the extended approximate solid angle based model itself, i.e. using (4.15)
and (4.21) for an interaction at some point. Then, the cost function (4.13),
is evaluated using the generated pixel values for positions around the chosen
interaction point. One typical example is shown in figure 5.4 for the approximate
solid angle model and extended approximate solid angle model. The interaction
point was chosen as (x, y, z) = (2, 5, 3). The values for C and A were chosen to be
2 and 200. The 3D plots in figure 5.4 show the value of the cost function when X
and DOI are varied around the interaction point. The cost function generated by
the approximate solid angle model (figure 5.4(a)) is very smooth, while the cost
function which includes the critical angle into the model creates local minima in
the cost function (figure 5.4(b)). From this example, we can see that the extended
approximate solid angle model is very sensitive to good initial values due to local
minima in the cost. This is especially the case for the DOI estimation.

To overcome this initial value problem, we first used the approximate solid-
angle model to get a first estimate of the model parameters. These values are
then used as initial values for the extended approximate solid model fitting. The
results, shown in table 5.5, are now very comparable to those in table 5.2, but
still not better.
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Figure 5.4 – (a) Cost function as a function of X and DOI for an interaction at
(x,y,z)=(2,5,3) using the approximate solid angle model. (b) Similar plot for the
extended approximate solid angle model
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Initialization
method

X-direction Y-direction DOI-direction

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

Bias
(mm)

Standard
parameters 1.26 4.70 1.42 4.98 5.37 7.40 1.49

Approximate solid
angle model 1.13 4.24 1.21 4.18 2.02 6.04 0.34

Table 5.5 – Resolution obtained with extended approximate solid angle model
and initialization using either the standard parameters or results from the normal
approximate solid angle model.

5.2.6 Influence of Compton scattering inside the crystal

Using a monolithic scintillator block, it is not possible to reject those events
that undergo multiple interactions in the block, thereby creating multiple light
emission points. The influence on the spatial resolution when multiple interactions
are either included or excluded from the simulated data set is shown in table
5.6. Multiple interactions have more influence on FWTM than FWHM. On the
FWHM, they add an extra component to the X-Y resolution of about 0.6 mm
FWHM. For the DOI resolution, the extra resolution component is about 1.0 mm
FWHM. Multiple interactions have more influence on the FWTM in all three
directions. The larger influence on the DOI resolution can be understood from
the fact that Compton scattering at 511 keV is mostly forward along the DOI
direction.

X-direction Y-direction DOI-direction

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

No multiple
interaction 0.96 3.22 1.05 2.99 1.61 4.93

With multiple
interaction 1.13 4.24 1.21 4.41 1.91 5.79

Table 5.6 – Influence of multiple interactions on the resolution.
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5.2.7 Influence of surface polishing

To study the influence of unpolishing the four side surfaces and top surface, we
set σva =5.6o [14] in the UNIFIED model to simulate a rough surface. With
an unpolished surface, the scintillation light reaches an APD pixel after being
internally reflected on the many micro-facets. Each micro-facet creates its own
virtual source. The result is a cluster of virtual sources. Since a cluster of mirror
sources is difficult to model, we will still use a single mirror source to represent
the cluster of sources. The position of this mirror source is identical to the one
used for polished surfaces. Table 5.7 compares the spatial resolution obtained for
a polished versus an unpolished LSO block, using the approximate solid angle
model with 4 mirror sources. It can be concluded that, under the assumption of
using point-like virtual sources, polishing all surfaces has nearly no influence on
the global spatial resolution.

X-direction Y-direction DOI-direction

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

polished 1.10 3.98 1.20 4.41 1.91 5.49
unpolished 1.14 4.20 1.33 4.39 1.82 6.01

Table 5.7 – Influence of surface polishing on the resolution.

5.2.8 Local resolution and bias

To study how the resolution and the bias vary across the monolithic block, the
crystal volume was divided in 1 mm intervals in X direction and 2 mm in DOI
direction. No division was made in the Y direction, i.e. the Y coordinate was
not taken into account. For each of the 1(X) × 20(Y ) × 2(Z) mm3 volumes,
X and DOI resolution profiles were extracted using simulation data, followed
by the computation of the FWHM and the bias. The simulation model used
polished block surfaces, 1800 electrons ENC and included multiple interaction
events. Figure 5.5 shows the results as color-coded images. For symmetry reasons
only half of the X coordinate range was studied.

In general, the X resolution degrades as the interaction point moves further
away from the APD and is the worst in the top corner. In the lower third of
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Figure 5.5 – X-resolution (a), X bias (b), DOI resolution (c) and DOI bias (d)
as a function of the X-position and DOI of the true interaction point. The DOI
coordinates go from bottom (0 mm) to top (10 mm) and the X coordinates go from
the crystal center (0 mm) to the crystal edge (10 mm).
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the block, the resolution is sub-millimeter. However, there is rapid resolution
degradation in the upper two millimeter of the LSO block.

The X bias is usually small except for interactions within 1 mm from the edge,
especially in the top corner. Here, the events are localized closer to the center
compared to the true interaction point. Towards the top-middle of the crystal,
there is a region where the X bias is slightly negative. This needs to be looked
into further.

The accuracy of the predicted interaction depth also degrades for interactions
further away from the APD. In the lower part of the block, the DOI resolution
is better than 1.5 mm FWHM. The bias on the DOI coordinate is unidirectional
towards the bottom, i.e. always positive. In about 75% of the block volume, it is
around 0.5 mm and it increases when either approaching the side or top surface.
Hence, the predicted interaction position should be moved 0.5 mm towards the
top. This compensates for the DOI bias of events that interact more than 2 mm
away form the side or top. The DOI bias of the remaining events is only partially
compensated. An exact compensation of the DOI bias for the edge events is not
so easy because the DOI resolution of these events is larger than their systematic
miss-positioning along the DOI direction.

5.2.9 Reduction the electronic readout channels

Up to now we used all 64 APD pixel signals in the NLS modeling process. In
order to simplify the read out electronics, one could think of adding a summing
preamplifier which adds the signals from the rows and columns. Hence the number
of read out channels reduces from 64 to 16. In this case the model used in the
NLS fitting is changed appropriately, i.e. the solid angles are now the sum of the
solid angles of all pixels in one row or column.

The results of using this new readout geometry are shown in table 5.8. The
resolution gets about 30% worse in the X dimension and DOI dimension while
the Y direction suffers by a 50% resolution increase. This shows that in order to
use a simpler electronic readout, a compromise on the spatial resolution has to be
made.

5.2.10 Impact of the size of the APD’s

When the APD pixel size would be reduced, we have more data points to fit the
model to. On the other hand, smaller pixels collect less scintillation light and
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X-direction Y-direction DOI-direction

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

Individual
channels 1.10 3.98 1.20 4.41 1.91 5.49

Sum row and
column 1.45 5.13 1.83 4.87 2.61 7.94

Table 5.8 – Influence of reducing the number of electronic readout channels.

hence the SNR per pixel will be worse.
To test whether smaller pixels could improve the performance of our NLS

method, a virtual APD with 20×20 pixels measuring 1×1 mm each was simulated.
The size of the LSO block was kept at 20× 20× 10 mm. It was assumed that no
gaps exist in-between the pixels, i.e. 100% packing fraction.

When no electronic noise is added, the simulated resolution in the X direction
improves from 0.74 mm FWHM in case of the real APD to 0.62 mm for the virtual
APD. However, the DOI error distribution using the virtual APD has a strange
shape (figure 5.6(a)) compare to the DOI error distribution obtained with the
real APD (figure 5.6(b)): when an event interacts in the top part of the LSO
block, the scintillation light spreads most and the measured light distribution is
very noisy for the virtual APD with smaller pixels. An example is shown in figure
5.7(a) for an event interaction at a depth of 3.863mm (from the top surface). A
similar event detected by the real APD with the 1.6x1.6 mm pixels generates a
less noisier light distribution (5.7(b)) .

Therefore making the pixels smaller does not necessarily improve the perfor-
mance of our NLS algorithm due to the degradation of the photon statistics per
pixel which makes the modeling less accurate. Optimizing the pixel size as a func-
tion of the light yield and crystal thickness could be part of future optimizations.
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Figure 5.6 – (a) the DOI error distribution using the virtual APD (b) the DOI
error distribution using the real APD
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Figure 5.7 – (a) an example of light spread for virtual APD when the interaction
is at the top part of the crystal (3.863mm from the top surface) (b) similar example
of light spread for real APD.
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5.3 Experimental results

5.3.1 Acquiring experimental modeling data

To shoot 511keV photons at a known position onto a polished LSO block, a narrow
beam is defined by geometrical collimation using a 22Na point source (φ=0.5 mm)
and a 2x2x5 cm Bismuth Germinate (Bi4Ge3O12 or BGO) scintillator mounted
on a photomultiplier tube (PMT) at a distance of ≈ 105 cm from the source
(figure 5.1). The peak sensing ADCs are triggered when both the PMT signal
and the analog sum of the 64 APD signals cross a preset threshold level within
a coincidence time. After digitization, the values of the 64 channels are read out
by a Labview program.

Figure 5.8 – Count rate profile corresponding to a 1.2 mm ± 0.2 mm FWHM 511
keV gamma beam being scanned over the edge of the LSO block.

The width of the beam was estimated by measuring a count rate profile when
the beam is scanned over the edge of the block in 0.5 mm steps (figure 5.8).
Assuming that a Gaussian distribution can describe the photon beam, the FWHM
is obtained by fitting an erf(x) function through the count rate profile. This
yielded a value of 1.2 ± 0.2 mm FWHM. The position halfway the rising edge of
the erf(x) function was defined as the edge of the LSO block. The background
events due to scattered and random coincidences correspond to 8 % of the total
number of events measured when the beam is positioned on the block.

The detector box (white box in figure 5.1) is placed on a precision computer
controlled X-Y stage, allowing automated scanning over the 20x20 mm LSO block
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surface in 0.5 mm steps in both direction. At each of the 1600 beam positions,
about 150 events were measured. Only events in a 380 keV – 630 keV energy
window are accepted. The detector can also be rotated relative to the direction
of the incoming gamma beam to vary the 511 keV gamma incidence angles on the
LSO block.

5.3.2 X-Y resolution

The X and Y positions are estimated using the approximate solid angle model
and then compared with the known beam position. The FWHM and FWTM of
the resolution profile in the X direction are 1.87 mm and 5.21 mm respectively.
For the Y direction we obtained 2.51 mm FWHM and 6.48 mm FWTM. The
resolutions obtained with experimental data are slightly higher than what would
be expected from adding the effect of a 1.2 mm FWHM photon beam to the
simulated resolutions, i.e. 1.62 mm FWHM in the X direction and 1.70 mm
FWHM in the Y direction. This could be due to the 0.2 mm uncertainty on the
measured beam width and the fact that the tails in the true beam profile are
bigger compared to those expected from the Gaussian assumption.

The resolution along the Y direction is worse than along the X direction. One
of the reasons is that the APD pixels are not evenly distributed in Y direction.
This trend is also visible in the simulation results (Table 5.2). Another reason
is that the manual mounting of the two APDs on the LSO block resulted in a
slightly different geometry than the one used in the model (figure 5.9), i.e. the
coordinates (xi, yi) of the ith pixel center are not at the same position relative to
the LSO block as those used in the model. This was specifically the case in the
Y direction.

Figure 5.10 shows the local FWHM and bias for beam positions in 1 mm inter-
vals along the X-axis for all beam positions at least 2 mm from the edge. Hence
we used 150×80 events to generate each of the local resolution profiles. The av-
erage local FWHM resolution is 1.7 mm and is rather constant along the length
of the LSO block. In this region the bias also remains small. For beam positions
within 2 mm from the edge, the resolution profiles become very non-Gaussian
and sometimes exhibit multiple peaks (figure 5.11) because of the boundary con-
straints imposed on the cost minimization during the fitting procedure. For these
distributions, the FWHM representation is not very indicative.
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Figure 5.9 – The manual mounting of the two APDs on the LSO block.

5.3.3 DOI resolution

Contrary to the simulations, the true DOI coordinate is unknown in the exper-
imental data. The DOI position of an interaction was obtained indirectly by
rotating the detector over 45o. When a 511 keV photon impinges at a 45o angle,
the DOI is equal to the difference ∆X between the coordinate X0 where it enters
the LSO block and the coordinate X where it interacts (figure 3.8 on page 75).
Hence, the distance ∆X is obtained from the known beam incidence point and
the predicted X coordinate using the approximate solid angle model. Comparing
the obtained ∆X with the predicted DOI coordinate yields a DOI resolution of
3.4 mm FWHM and 7.61 mm FWTM. There was also a systematic error on the
estimated DOI of -0.3 mm. These results contain a number of degrading effects:

1. Uncertainty on the estimation of interaction X coordinate, i.e. the resolution
in the X direction.

2. A larger beam width of 1.2mm /cos(45o) = 1.70 mm FWHM due to the
inclined incidence of the photon beam.
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Figure 5.10 – Local FWHM (full line) and bias (dashed line) in the X direction
obtained from experimental data using the approximate solid angle model.
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Figure 5.11 – Multiple peaks in the x-estimation error histogram, where the beam
is 1.5mm from the edge in X direction.

3. Uncertainty on the incidence coordinate X0 relative to the edge.

4. Beam angle might not be perfectly at 45o.

The first two effects add to the FWHM/FWTM of the DOI resolution. If the X
resolution is adjusted to take the larger beam width into account by subtracting it
from the obtained DOI resolution, we estimate the intrinsic DOI resolution to be
around 2.6 mm FWHM. The last two degrading effects add an additional bias to
the DOI estimation. This could explain the difference in bias observed between
the DOI estimates from simulated data (systematic error towards the bottom)
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and the DOI bias using experimental data (systematic error towards the top).

5.4 Conclusion

Using simulation data, two models have been studied: exact solid angle based and
approximate solid angle based. The approximate solid angle based model yielded
similar results to the exact solid angle based model but requires less computing
time. A weighted least squares method to fit the model to the data was slightly
inferior to a normal least square fitting.

Adding a critical angle effect to the model made the fitting of the model very
sensitive to the initial values and it became easily trapped into local minima that
appeared in the cost function.

From the local study of the resolution and bias in X-direction and DOI, it
follows that the performance improves as the interaction occurs closer to the
APD. Hence a detector design with the APD on the front-side of the LSO block
seems more appropriate since more interactions occur in the upper part of the
crystal [64]. Edge effects only seem to manifest themselves significantly within 1
mm from the edge.

In our current experimental setup, the electronic noise is the limiting factor.
Reducing the electronic noise from the 1800 electrons ENC to around 600 electrons
ENC would clearly improves the resolution. Using a model with point-like virtual
sources, it was shown that unpolished crystal surfaces yield similar performances
than fully polished crystal surfaces.

Applying the approximate solid model with 4 virtual sources to experimental
data resulted in an average resolution over the complete block of 1.85 mm FWHM
in the X direction and 2.5 mm FWHM in the Y directions and 3.4 mm FWHM
DOI. If the influence of the 1.2 mm FWHM beam size is subtracted from these
results, the intrinsic resolution in X and Y direction becomes 1.4 mm and 2.2 mm
FWHM respectively. An evenly distributed APD geometry and more accurate
mounting of the LSO block on the APD matrices will probably improve the reso-
lution in Y direction. The estimated intrinsic DOI resolution is estimated at 2.6
mm FWHM.

The model used on the experimental results did not take inter-pixel gain vari-
ations into account. Measuring the individual gain for each APD pixel and nor-
malizing the signals accordingly, could potentially further improve the achieved
experimental resolutions.



Chapter 6

Comparison of Algorithms

This chapter compares our nonlinear least square fitting algorithm (NLS) with
positioning approaches investigated by other groups. The first part of this chapter
gives some details about the implementation. In the second part, these algorithms
will be applied on our simulation and measurement data to compare their perfor-
mance. In addition, an extra comparison is done with an ML clustering method
(section 3.2.3) performed by another group using a crystal of a different size and
a different photo detector.

6.1 Alternative positioning algorithms

The alternative algorithms which we will compare with include Maximum likeli-
hood (ML) maximization based methods, a Neural Network (NN) approach and
the theoretical Cramér-Rao lower bound (CRLB). The implementation of the
NN approach was already detailed in chapter 3. The following paragraphs in
this section explain how the other methods were practically implemented for the
comparison analysis.

6.1.1 3D-ML position estimation

In simulation data, the type of interaction (single or multiple) and the exact
interaction position are known. We will take advantage of this information and
use an ideal 3D-ML algorithm on the simulation data in order to compare the
best results from 3D-ML to NLS. First, no electronic noise was considered. Next,
a comparison will be done including the effect of the electronics.

119
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6.1.1.1 Implementation in the absence of electronic noise

The research groups that investigate the ML positioning methods assumed that
the number of photons gm detected by the mth photo detector pixel are Poisson
distribution [34]. The likelihood of observing a set of signals g = {gm,m = 1 · · ·M}
as a function of the gamma interaction position R and gamma energy E is then
given by the following multivariate Poisson equation (See chapter 3):

pr(g|R, E) =

M∏
m=1

[
Nm(R, E)

]Nm
Nm!

exp
[
−Nm(R, E)

]
(6.1)

with

Nm ≡ u (gm/Gm) , Nm ≡ 〈gm(R,E)〉/Gm (6.2)

and where 〈· · · 〉 is an ensemble average, u (· · · ) is a rounding operator and Gm

is the gain of the mth photo detector pixel. Since Nm(R,E)Nm can become
extremely large, the logarithm of the likelihood is usually used. Therefore, the
estimation of the maximum likelihood becomes:

(
∧
x,
∧
y,
∧
z)
ML

= argmax
(x,y,z)

log{pr(g|R, E)} (6.3)

= argmax
(x,y,z)

log{
M∏
m=1

[
Nm(R, E)

]Nm
Nm!

exp
[
−Nm(R, E)

]
} (6.4)

= argmax
(x,y,z)

M∑
m=1

(
NmlogNm −Nm − logNm!

)
(6.5)

= argmax
(x,y,z)

M∑
m=1

(
NmlogNm −Nm

)
(6.6)

Nm(R,E) is the mean number of detected photoelectrons and they should be pre-
calibrated for each scintillator in order to compute the ML. If the pre-calibrated
look-up table of Nm(R,E) is only in two dimensions (x, y), the ML will give an
estimate of the 2D spatial position. If entries in the look-up table are obtained
for R= (x, y, z), the interaction position can be estimated in 3D.

Parametric calibration of Nm(R,E) It is impossible to calibrate Nm(R,E)

in the z (DOI) dimension directly in an experiment since one cannot control the
depth of interaction of a gamma ray. An approach to overcome this problem is
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proposed in [34]. Here Nm({x, y, z}, E) is presented as a polynomial function
of the DOI coordinate z (3.6), and the coefficients of the polynomial function
are calculated using Maximum Likelihood estimation from all the collected data
using prior knowledge of the distribution of the gamma rays path lengths in the
scintillator (3.11). This distribution is defined relying on simulation data.

It is not the goal of this thesis to repeat the work of [34]. Therefore, we will
compare the 3D-ML with our NLS method using simulation data, where the ML
estimation of coefficients in the polynomial function can be done using the known
DOI coordinate. For each beam position (x, y) and for each photon detector pixel
m, the coefficients along the DOI direction z are estimated using

ĉmn = argmax
cmn

J∑
j=1

(
NmlogNm −Nm

)
(6.7)

= argmin
cmn

J∑
j=1

(
3∑

n=0

cmnz
n −Nmlog

3∑
n=0

cmnz
n

)
(6.8)

where J is the total number of single interaction events collected at a given beam
position. Here, we used a third order polynomial to describe the depth dependence
of Nm, i.e.

Nm =

3∑
n=0

cmnz
n (6.9)

The polynomial parametrization as a function of DOI is only valid in case
the impinging gamma only interacted once in the scintillator. In a simulation,
these events can be easily selected. In an experimental setting, it is difficult to
distinguish single and multiple interactions. Compton filtering is one strategy
to obtain only single interaction events in measurement data [34]. This is based
on the fact that a secondary interaction often occurs away from the beam axis.
Therefore, a maximum likelihood threshold can be used to filter out all the events
which are estimated off-center from the beam axis. This won’t of course be perfect.
Here, the 3D-ML will only be compared with the ideal case of single interactions.

To find the values Ĉmn which minimize the unconstrained multivariate func-
tion (6.8), we use the function “fminunc” build in the Matlab Optimization tool-
box. The algorithm used in this function is based on the interior-reflective Newton
method described in [17, 18].

The initial value ĉ0mn used as a starting point in the search for the optimal
value of ĉmn is calculated from a simple linear least squares function, where for
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each beam position (x, y) and for each photon detector m, the value of Nmj from
the jth event is equal to

Nmj = Nmj + e =

3∑
n=0

c0mnz
n
j + e

where e is the error between the value of
3∑

n=0
c0mnz

n
j and the measured Nmj . There-

fore, the estimated initial value of ĉ0mn is:

ĉ0mn = Z \Nm

where

Z =


1 z1 z2

1 z3
1

1 z2 z2
2 z3

2

...
...

...
...

1 zJ z2
J z3

J

 and Nm =


Nm1

Nm2

...
NmJ


The searching method requires the user to supply the gradient of the objective

function. Our objective function (6.8) is a sum composed by J sub-parts, hence
the gradient is also the sum of the J sub-gradients.

Figure 6.1 shows an example of how well the polynomial function (6.9) can
present Nm once the optimal values of Ĉmn have been found. The beam position
is at the point (x, y) = (5, 5) in figure 6.1 (e), and four examples of the fittings
from channel 19, 39, 47, 59 are shown in figure 6.1 (a), (b), (c), (d) separately.
The corresponding channel positions are illustrated in 6.1 (e).

We notice that there is one outlier in figure 6.1 (a) and (b), whose DOI is
7.582. The reason is that this is data from an event whose first interaction is
a Rayleigh Scattering (also called Coherent Scattering) at position (5, 5, 7.582)

in the crystal, followed by a photo electric absorption at (5.304, 5.721, 1.448),
which is 1.4 mm from the bottom. A Rayleigh Scattering is an elastic interaction
without energy loss but with momentum change (see Appendix A). Hence, all the
energy is deposited in the second interaction place close to the APD array. That’s
why pixel 47 closest to the interaction side receive more light, and the neighboring
pixel 39 has less light than expected.

The chance that this kind of events can occurs in an LSO crystal is 5% [67]
and according to the simulation data based on our setup, 2% of the total detected
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Figure 6.1 – (a-d) Number of photons detected in pixels 47,39,59 and 19 as a
function of the DOI of each of the 150 events impinging at position (5,5). The
red line is the corresponding third order polynomial fit. (e) Schematic showing the
beam impinging position (red dot) relative to the four pixels examined.
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events first had a Rayleigh Scattering and then underwent a Compton Scatter or
Photo electric absorption. The remaining 3% escapes without a second interac-
tion.

Interpolation of cmn The coefficients cmn are calculated for each photo de-
tector m and for each beam position (x, y). A beam step size of 0.5 mm between
-9.5 and 9.5 mm, 64 pixels and 4 coefficients for each polynomial to represent the
DOI dependent Nm, results is a 19 × 19 × 64 × 4 look-up table (LUT) of Cmn.
The 3D-Nm at those specific positions (x, y) present in the LUT can hence be
computed.

To obtain a 3D-Nm at any other position (x, y), the LUT is interpolated. To
make the Grid searching method efficient (3.2.1), a discontinues interpolation of
Cmn, using a cubic spline method, in steps of 0.125mm in x and y dimensions
has been done. The dimensions of Cmn therefore enlarge to 73 × 73 × 64 × 4.
The precision of the estimation based on the interpolated LUT is in the order of
0.125mm. This is acceptable since the spatial resolution are not better than 0.5
mm.

6.1.1.2 Implementation in the presence of electronic noise

Adding electronic noise to the simulation data makes the results more realistic,
especially for APD photo detectors since the internal gain of APD is normally only
around 100. Compared to PMT gains of up to a few 106, APDs are more sensitive
to the electronic noise. If electronic noise is dominant, a Gaussian distribution is
a better choice over a Poisson distribution to present the detected signals. The
likelihood to detect a signal gm then becomes:

pr =

M∏
m=1

1√
2πσgm

exp

(
− (gm − gm)

2

2σ2
gm

)
(6.10)

with

gm ≡ 〈gm (R, E)〉 (6.11)

and where 〈· · · 〉 is an ensemble average, σgm is the standard deviation of gm, M is
the number of pixels in the photo detector. The estimation of the position then
becomes
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(
∧
x,
∧
y,
∧
z)
ML

= argmax
(x,y,z)

log{pr(g|R, E)} (6.12)

= argmax
(x,y,z)

log{
M∏
m=1

1√
2πσm

exp

(
− (gm − gm)

2

2σ2
m

)
} (6.13)

= argmax
(x,y,z)

M∑
m=1

(
log

1√
2π
− logσm −

(gm − gm)
2

2σ2
m

)
(6.14)

= argmin
(x,y,z)

M∑
m=1

(
logσm +

(gm − gm)
2

2σ2
m

)
(6.15)

Parametric calibration of gm and σm Two ways to present gm and σm as
a function of DOI have been investigated. One is similar to the method used in
the previous section, i.e.

gm =

3∑
n=0

cgmnz
n

and

σgm =

3∑
n=0

cσgmn z
n

The alternative approach is to represent σgm using:

σgm =

√
cσm0

+
cσm1

z2 + 1
(6.16)

where z is the DOI coordinate. The underlying motivation is that the variance
changes according to the amount of detected photons. This amount is propor-
tional to the solid angle, which is approximately proportional to 1/z2 (4.20). The
+1 term in the denominator is added to ensure that the function does not diverge
when z comes close to the bottom of the crystal, i.e z→ 0.

However, for both ways, the searching process always converged to a point
very close to any given starting values. Therefore, no results were obtained for
a Gaussian model based 3D-ML method using simulation data with electronic
noise. A better model to represent gm and σm and more calibration data are
required to perform a Gaussian based 3D-ML method. Therefore, we will use a
2D-ML (only in (x, y) dimensions) to compare with NLS and NN methods.
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6.1.2 2D-ML position estimation

In the presence of electronic noise, the generation of a look-up table of the mean
and variance at each beam position is much simpler for 2D-ML then for the 3D
case. Since the two dimensions (x, y) of the beam position are known, the mean
and variance can be generated directly from the data.

An example of the signals of the 64 channels for a central beam position are
plotted in figure 6.2. Channel 17, 26 and 64 are the three bad channels, which are
not used in ML method. We can see that four channels (28, 29, 36, 37 within the
blue square), which are near the source, are not really Gaussian shaped due to the
varying DOI. The signal histograms of the other pixels are of a Gaussian shape.
The mean and variance of the 61 channels are computed and saved in look-up
table. This process is repeated for each of the 40× 40 calibration positions.

After the look-up table has been built, it can be used to estimate the 2D
position of a new perpendicular impinging event using equation (6.15):

(
∧
x,
∧
y)

2DML
= argmin

(x,y)

61∑
m=1

(
logσm +

(gm − gm)
2

2σ2
m

)
(6.17)

where gm is the signal of mth channel, and gm and σgm are taken from pre-
calibrated look-up table.

6.1.3 Cramér–Rao lower bound

One can derive a CRLB to express the smallest value of the standard deviation
any unbiased estimator can achieve, i.e. the lower bound is independent of the
estimation algorithm [71]. In case of 2D position estimation, the lower bound
shows us the theoretical best performance for estimating the coordinates (x, y)

from a known set of APD outputs. This lower bound can be used to verify
whether a specific estimation algorithm is efficient. If the standard deviation of our
estimator is close to the CRLB, it means the estimation algorithm is doing well.
Here we check the CRLB for an additional purpose, i.e. to confirm the difference
of the spatial resolution in the x and y direction obtained from experimental data
using either 2D-ML method, NLS method or NN methods (as we shall see in the
results in table 6.3).
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Figure 6.2 – Signals of 64 channels for beam position at the central. Channel 17, 26
and 64 are bad channels. The mean and variance of other channels are computed to
save in look-up-table. This is repeated for each of the 40× 40 calibration positions.
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The CRLB of any unbiased estimator is calculated from the Fisher information
matrix I [70].

Iv,w(x, y) = −
M∑
m=1

E

[
∂2ln (pr (gm))

∂v∂w

]
(6.18)

where E is the expectation value, v, w are equal to x or y, gm is the signal detected
in the mth APD, and pr the likelihood to detect a signal gm given by equation
(6.10), where the mean gm and variance σgm of the beam position (x, y) are
calculated from measurement data. The CRLB for e.g. the x coordinate is given
by:

σx ≥
√
I−1
xx (x, y) =

√
Iyy(x, y)

Ixx(x, y)Iyy(x, y)− I2
xy(x, y)

(6.19)

Substituting (6.10) in (6.18), the information matrix becomes [70]

Iv,w(x, y) =

M∑
m=1

1

2σ2
gm

(
− 1

σ2
gm

∂σ2
gm

∂v

∂σ2
gm

∂w
+ 2

∂gm
∂v

∂gm
∂w

)
(6.20)

In our experiment, the training data contains about 150 events per beam
position. For each beam position (x, y) the mean gm and variance σgm for each
APD are therefore calculated from these 150 events. Since the data contain noise,
they should be smoothed first before calculating the derivatives numerically using:

∂gm(x, y)

∂x
=
gm(x+ h, y)− gm(x− h, y)

2h
+O(h2) (6.21)

where h = 0.5mm.

6.2 Results

6.2.1 Comparing all algorithms using simulation data

We first compare the performance of the different algorithms using Monte Carlo
data. Because the NN method (see Chapter 3) yields the 2D impact position on
the surface, and the 3D-ML method did not work in the presence of additive noise
(i.e. when we have to assume a Gaussian signal distribution), the comparison is
limited to the 2D achievable resolution in the x and y direction. The data used
in the different algorithms includes 1800 e− ENC electronic noise. At each beam
position, 300 events are simulated which deposit more than 350keV energy.
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Table 6.1 shows that the theoretical lower limit given by the 2D CRLB is just
below 1 mm for the x direction and a little above 1 mm for the y direction. Hence,
it looks that the non-regular distribution of the APD pixels in the y direction
causes some loss of information, resulting in a slightly inferior resolution.

The NLS algorithm is closest to the CRLB. The 2D-ML and NN algorithms
are significantly worse. This seems to indicate they are more sensitive to noise
and the impact of multiple interactions than the NLS method. Also note that
the NN method is not sensitive to the different light sampling pattern in x and y
direction.

With electronic noise
X-direction Y-direction

FWHM
(mm)

FWHM
(mm)

2D CRLB 0.87± 0.32mm 1.16± 0.65mm
2D-ML 1.65 1.75
NN 1.76 1.75
NLS 1.10 1.20

Table 6.1 – FWHM resolution in x and y direction using CRLB, 2D-ML, NN and
NLS applied on simulated data with electronic noise.

6.2.2 Influence of multiple interactions on ML and NLS
performance

About half of the simulated events used in the comparison study undergo multiple
interactions. To study their influence, the resolution achieved by the ML and
NLS algorithms was determined in case of single interaction events and in case of
multiple events.

For the 3D-ML method, two thirds of the single interaction events (i.e. 100
events from each beam position) is used to calibrate the coefficients cmn. The
resolution of the ML algorithm is then evaluated using either the last one third
of the single interaction events, or all the multiple interaction events . As for the
NLS method, all the single interaction or multiple interaction data are used to
evaluate the algorithm.

Table 6.2 shows the 3D resolution components for the 3D-ML method based on
Poisson model in section 6.1.1.1 and the NLS method for simulation data without
additive electronic noise. We see that in the absence of multiple interactions,
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the 3D-ML method achieves the best resolution and has no detectable bias on
the DOI. The disadvantage of the 3D-ML algorithm is that it degrades more
rapidly than the NLS approach when testing on multiple interaction events. This
is not surprising since the 3D-ML approach used here is based on a model that is
incorrect when more than one interaction occurred. Hence more parameters are
required in the ML method to model the multiple interactions, but this will make
the model complicated and more research is required [34].

One solution would be to filter out the multiple events [34] and only use single
interaction events. This will obviously result is a significant loss of sensitivity of
about 50% in our detector.

No electronic noise
X-direction Y-direction DOI-direction

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

FWHM
(mm)

FWTM
(mm)

Bias
(mm)

ML (single int.) 0.46 1.31 0.48 1.32 0.89 2.04 -0.06
ML (multiple int.) 1.09 3.05 1.20 3.05 1.41 4.95 -0.23
NLS (single int.) 0.52 1.65 0.66 1.51 0.98 2.85 0.32

NLS (multiple int.) 1.00 3.87 0.99 3.56 1.53 5.41 0.1

Table 6.2 – Global spatial resolution from ML and NLS comparison without
electronic noise.

6.2.3 Comparing all algorithms using experimental data

Using the experimental data, only the signals from the 61 good channels are used
to calculate the 2D CRLB, and evaluate the 2D-ML and NLS methods. As for
the NNs, the 3 bad channels were set to be 0 before taking the sum of the rows
and columns.

Figure 6.3 plots the FWHM CRLB on the resolution in the x and y direction,
starting at 1 mm from the edge. The FWHM CRLB in x direction, averaged over
the complete surface equals 1.84±0.47mm, while in y direction it is 2.25±0.62mm.
Again we noticed a difference in the theoretical lower limit.

For the 2D-ML method, two third of the experimental data are used to build
the look-up table. The rest is used to test the resolution. For the NN approach,
about one tenth of the data are used to train the NN, and all others are used to
test. The results are shown in table 6.3, together with the result from NLS. The
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results from NLS and 2D-ML are quite similar, while NN has the best resolution
in y direction but worse in the x direction.
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Figure 6.3 – CRLB(FWHM)

Experimental data
X-direction Y-direction

FWHM
(mm)

FWHM
(mm)

CRLB 1.84± 0.47mm 2.25± 0.62mm
2D-ML 1.82 2.55
NN 2.20 2.30
NLS 1.87 2.51

Table 6.3 – FWHM resolution in x and y direction using CRLB, 2D-ML, NN and
NLS applied on experimental data. The contribution of the 1.2mm FWHM beam
size is still included.

6.2.4 Comparison to 2D-ML+DOI clustering using experiment
from another setup

It is difficult to compare with results obtained from with a crystal of a different
size and read out by a different kind of photo detector. Here we shown one result
that was recently reported in [45]. The crystal they are using is rather big, i.e.
50× 50× 15 mm LSO. The photo detector is a Hamamatsu H8500 PMT coupled
to the bottom of the crystal. The entrance surface of the crystal was painted
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white but the sides of the crystal were painted black. Gamma rays impinged on
the entrance surface of the crystal using a 0.6 mm FWHM beam.

The method they are using is a 2D-ML+DOI clustering algorithm, which has
been introduced in section 3.2.3, where a look-up table of the means and variances
of the Gaussian distributions needs to be built for 7 DOI regions, and a third-order
polynomial fit is then applied to those means and variances. The fitting results
are used to interpolate from 7 DOI layers to 15 DOI layers. The DOI estimation
is therefore discontinues in steps of 1 mm.

Their results are shown in table 6.4 which is not a single number of the global
resolution as we have been shown until now, but it is shown by the mean and
standard deviation from all beam positions. The global resolution includes the
local bias indirectly into the result.

X-direction
(mm)

Y-direction
(mm)

DOI-direction
(mm)

ML cluster (raw) 1.61±0.29 1.61±0.28 4.80±0.36
ML cluster (intrinsic) 1.49±0.30 1.49±0.32 4.48±0.37
NLS (raw global) 1.87 2.51 3.4

NLS (intrinsic global) 1.43 2.20 2.6

Table 6.4 – Spatial resolution with/without beam correction using ML cluster
method, data of first two rows from [45].

If we subtract the beam size effect, (they have 0.6 mm FWHM beam, we
have about 1.2 mm), the intrinsic resolution in the X direction become quite
comparable. We have a worse Y resolution due to the incorrect mounting of
the LSO block on the two APDs, and the irregularly scintillation light sampling
geometry. Finally, due to our smaller crystal size, the impact of the biased evens
near the edge have a larger relative contribution to the broadening of the global
error histogram.

However, the NLS shows significant better resolution in the DOI direction.
This could due to the fact that the size of the crystals are different (they have
50×50×15mm, we have 20×20×10mm). But also, the worse resolution in DOI in
the 2D ML+DOI cluster method is due to the Compton scattering effects which
are mainly forward [45]. The events contaminate some of the DOI estimating
capabilities of the look-up table. As for the NLS method, since no pre-calibration
is required, the position estimation is not effected by previous events.
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6.3 Discussion and conclusion

In an ideal, noise-free world with single interaction events only, the 3D-ML Poisson
model based method has better resolutions than the NLS method and shows no
DOI bias. Its resolution degrades faster than with NLS when used on multiple
interaction events. In order not to lose sensitivity by only using single interaction
events, one hence has to compromise on the spatial resolution.

A comparision of our NLS method with a 2D-ML and a NN algorithm, using
simulation data including electronic noise contributions showed that the NLS
performance is closest to the theoretical lower limit given by the CRLB. The 2D-
ML and NN methods are more sensitive to the presence of model errors (due to
the pre-calibration or training) and of significant levels of electronic noise.

For experimental data, the CRLB in the X direction is 1.84 mm FWHM, and
2.25 mm FWHM in the Y direction. This means that the data contain less spatial
information to estimate the y-coordinate than to estimate the x-coordinate of the
interaction position. This trend is observed in all three methods: NLS, NN and
2D-ML.

The NN has the best global resolution of 2.3mm in Y direction , which hints
that the NN is influenced least by the sampling geometry differences and by the
imperfect mounting of the detector. The Y resolution of the other two methods is
about 2.5mm. On the other hand, the NN has the worst resolution in X direction
(2.2mm FWHM), while the other two algorithms achieve 1.82 mm FWHM (2D-
ML) and 1.87 mm FWHM (NLS) which are close to the CRLB in X direction.

There are some other reasons that could explain why pre-calibrated 2D-ML
and pre-trained NN are not better than NLS. Both NN and 2D-ML methods
require the acquisition of calibration (or training) data sets. These data sets can
get corrupted by bad events, i.e. events whose interaction location is not along
the gamma beam used to generate the calibration data:

1. In our experimental data setup, about 2% of the events has first undergone
an elastic Rayleigh scattering.

2. About another 8.6 % of the registered events are actually due to 1275 keV
gamma which are also emitted during the decay of Na22 [73]. These high
energy photons can undergo a Compton scattering in the LSO block and
deposited an amount of energy that lies within the energy window imposed
to select good events.
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3. More than 8% events are from scatter or randoms events (5.8).

4. Finally, the presence of multiple interaction events in the calibration data
set could degrade the performance of the trained algorithm.

Other factors that can influence the usage of pre-calibrated algorithms are varying
detector conditions such as temperature or bias voltages. If these parameters differ
between the moment the calibration data are taken and the moment the pre-
calibrated algorithms are used, it can degrade the performance of the algorithms.

An additional comparison with results from another group using a 2D-ML+DOI
clustering method has also been shown. The resolution along the X direction is
very similar with the result obtained using the NLS method on our experimen-
tal data. In the DOI direction, they have a worse resolution of about 4.4 mm
(intrinsic) compared to the NLS intrinsic DOI resolution of about 2.6 mm. The
main reason of this difference, is that they need to build a look-up table for DOI
positioning. The inclusion of multiple interaction events makes the DOI infor-
mation less correct since most 511 keV gamma will be forward scattered after a
first Compton interaction. The inaccurate look-up table will hence deteriorate
the DOI position estimation.

A drawback of methods that need calibration data is that it takes a long time
to obtain the training data. For our current setup, we need one day to get about
150 events in each of the 40 × 40 beam positions. This is even insufficient for
3D-ML and 2D-ML+DOI cluster methods. To speed up their data collection,
they use multiple sources [51] to reduce the time it requires to record sufficient
data for the 2D-ML+DOI cluster method to 6 hours. Since in theory, each crystal
needs to be calibrated separately, the calibration of a whole PET system will be
extremely time consuming. In addition, because PMT gains might change after
some period and APD are sensitive to voltage and temperature, re-calibration of
the detector from time to time might be required.



Chapter 7

Conclusion

Based on the target application area, each kind of PET scanner requires a dif-
ferent kind of performance. A pre-clinical (e.g. small animal) PET requires a
very high spatial resolution (< 1.5mm), a whole-body human PET benefits more
from TOF and a Brain-PET (or other specialized imaging systems, e.g. Positron
Emission Mammography (PEM)) need both high spatial resolution and a very
good sensitivity. The research presented in this work is targeted to dedicated
Brain-PET systems, and maybe also pre-clinical PET systems, that can be used
together with an MRI.

To improve the sensitivity, the ring of the PET system is normally made as
small as possible. However, this also introduces more parallax errors which require
DOI-measurement capabilities in the system. Therefore, a 3D positioning facility
is also important. However, commercial PET systems rarely provide this DOI
information.

The 2D spatial resolution of current PET systems based on discrete scintillator
detectors is determined by the size of the individual crystals. Making the crystals
smaller improves the spatial resolution but also reduces the SNR (which makes the
image noisier), decreases the sensitivity, worsens energy and time resolution, and
increases the cost and complexity. In addition, the existing methods to obtain DOI
information in discrete detectors usually need extra hardware and are therefore
not cost-effective.

In recent years, continuous detectors have shown to be an interesting alterna-
tive to simultaneously improve energy resolution and sensitivity without degrad-
ing the spatial resolution. Because the scintillation photons can travel freely over
some distance within the crystal, the light distribution can be used to determine
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the 3D gamma ray position. The challenge of this type of scintillator is the com-
plexity of the extraction of the 511keV gamma ray interaction position. Numerous
methods have been investigated to achieve this goal (see Chapter 3). However,
most of them need a time-consuming calibration procedure. Considering there
are in order of hundreds of crystals in one PET system, a method which does not
need pre-calibration or training is very interesting.

The goal of this thesis is to investigate a method that does not need prior
calibration data or extra hardware to obtain the 3D coordinates in one step and
this with an accuracy equal to or better than other existing methods.

To achieve this goal, a nonlinear least-squares (NLS) estimation method is
used. The difference between the NLS method and the classic maximum likelihood
(ML) method, is that we define a general model to describe the light distribution.
Hence, the 3D interaction coordinates are parameters in the model, which can be
estimated directly from the measured pixels signals using a numerical searching
method. The classic ML method assumes that the amount of photons detected
in each channel obeys a Poisson (or Gaussian) distribution and the mean of each
distribution should be pre-calibrated and saved in a look-up table. Afterward,
the gamma ray interaction position can be obtained using this look up table to
check which position is most likely to have generated the detected signals.

The general model used in our NLS method is based on the solid angles sub-
tended by the detector pixels as seen from the gamma ray interaction location
and from the additional virtual light sources mirrored around the surfaces of the
crystal. Those mirror sources are used to take internal reflections into account.
A constant parameter is also included in the model to represent the background
light, mainly due to the reflection of the optical photons on a diffuse reflector (e.g.
Teflon) surrounding the scintillator block. The parameters (i.e. the gamma ray
position (x, y, z), the amplitude and the constant parameter) are estimated us-
ing a interior-reflective Newton minimization method with boundary constraints.
This algorithm was implemented in Matlab.

The NLS method has been evaluated using both simulation and experimental
data. The detector used in this study consists of a 20×20×10mm3 LSO scintillator
block coupled to two Hamamatsu S8550 APD arrays. The APD arrays consist of
8 × 4 pixels, each measuring 1.6 × 1.6mm2. The LSO crystal is polished on all
sides and wrapped in Teflon. Simulation gave insight in how the model should
be optimized, such as how many mirror source should be add, if the exact solid
angle model can be simplified, the influence of the surface, etc. This is not easy
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to check experimentally since the DOI dimension cannot be obtained directly.
After the verification using simulations, the optimized model is evaluated using

experimental data. For perpendicular incident gamma rays, whose beam size is
about 1.2mm FWHM, the measured global resolution in X direction is 1.87mm
FWHM and 2.51mm FWHM in Y direction (beam effect still included). The
resolutions obtained with experimental data are slightly higher than what would
be expected from adding the effect of a 1.2 mm FWHM photon beam to the
simulated resolutions, i.e. 1.62 mm FWHM in the X direction and 1.70 mm
FWHM in the Y direction. This could be due to the 0.2 mm uncertainty on
the measured beam width and the fact that the tails in the true beam profile
are bigger compared to those expected from the Gaussian assumption. Another
reason is that the manual mounting of the two APDs on the LSO block resulted
in a slightly different geometry than the one used in the model. The third reason
could be that the gain variance in experimental setup has some influence on the
resolution.

The worse resolution in the Y direction is mainly due to the un-evenly dis-
tributed APD geometry (this trend is also visible in the simulation results) and the
inaccurate mounting of the LSO block on the APD matrices (this was specifically
the case in the Y direction).

By shooting the gamma ray beam at 45 degrees on the surface, DOI infor-
mation can be obtained indirectly to evaluate the NLS estimation of the DOI
coordinate. The measured resolution of the DOI is about 3.4mm FWHM, and
the intrinsic resolution is estimated at 2.6 mm FWHM.

The same experimental data are used to compare the NLS method with the
performance of a 2D ML algorithm, a NN approach and the CRLB. The latter is
the theoretical lower bound on the achievable resolution, independent of the algo-
rithm. The CRLB in the X direction is 1.84±0.47mm FWHM, and 2.25±0.62mm

mm FWHM in the Y direction (including beam size effect), which indicates that
the data contain less spatial information to estimate the y-coordinate than to
estimate the x-coordinate of the interaction position. This trend is observed in
all three methods: NLS, NN and 2D-ML. The 2D-ML achieves a resolution in X
direction of 1.82 mm FWHM. Both the 2D-ML and the NLS methods provide
a resolution very close to the CRLB in X direction, but their resolution in Y
direction is about 2.5 mm FWHM.

The NN approach results in a worse resolution in X direction (2.2 mm FWHM),
but a better resolution in Y direction (2.3 mm FWHM). This can be explained
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by the observation that the NN is influenced least by the sampling geometry
differences and by the imperfect mounting of the detector. Its worse performance
in the X direction might be caused by the three damaged channels, which were
not used in NLS and 2D ML method. To compute the sum of rows and columns
for the input of NN, their value was set to 0.

There are some reasons that could explain why the pre-calibrated 2D-ML and
the pre-trained NN are not better than the NLS. The multiple interactions, for
example, add model errors; outlier calibration data will also degrade the model
performance (i.e. the 2% Rayleigh scattering or less than 8.6% events in our
setup due to 1275 keV gamma ray decayed from the 22Na source or more than
8% events are from scatter or randoms events). Also, the APDs are sensitive to
the temperature and bias voltages fluctuations. This could cause a change in the
behavior of the detector after it has been calibrated.

The NLS approach has shown its attractive features such as good overall per-
formance and no need to pre-calibrate. It also has some potential downsides:
one needs to ascertain that the geometrical detector configuration applied in the
model corresponds with the true physical layout. This can be achieved by proper
mechanical mounting. Another limitation is the fitting algorithm. The Matlab
implementation is rather slow. For real-time usage, one might have to use a GPU
or hardware (i.e. FPGA) based solutions. The continuing improvement in the
speed of these devices will probably enable the future real time implementation
of the proposed least squares fitting algorithm.



Future Work

Three main research orientations can be considered to continue on the work in
this thesis. The first one is to optimize the detector design, i.e. the shape and size
of the crystal, the layout of the photo detector, etc. This will rely on Monte Carlo
simulation. Second is to test the method using new types of photo detectors, such
as GM-APD. A third aspect is to speed up the implementation of the algorithm
with the final goal to have a real time implementation.

Optimize the detector design As we have discussed in section 5.2.10, making
the size of the pixels smaller does not necessary result in a better spatial resolution
performance, and this due to the lack of statistics from the amount of detected
photons. More studies are needed for the NLS method in order to have the best
spacial sampling.

In addition to the layout, the size and the shape of the crystal should also be
invested. For example, to use the NLS method with trapezoidal shaped blocks to
reduce the inter-block dead space in a ring configuration. Then, the position of
the mirror sources should be adjusted, and the corresponding performance needs
to be further evaluated.

As pointed out in section 5.2.8, the NLS method has a better performance
when the interaction occurs close to the APD. On the other hand, more than 60
% of the events interact in the top part of the scintillator. Hence, placing the
photo detector on top of the crystal might be a better choice.

Testing on new photo detectors GM-APD’s draw a lot of attention in recent
years. It has the combined advantage of a PMT (i.e. high Gain, low ENF and
fast timing) and of an APD (compact and insensitive to magnetic fields). Testing
NLS performance on this new kind of photo detectors will be very interesting.
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Speeding up the implementation For a pixelated crystal, the gamma ray
position is only determined by which small crystal generates the light. There-
fore, the positioning is usually very fast. As for monolithic crystals, the positions
are calculated by more complicated algorithms, requiring more processing time.
Thus far, only a run time implementation was reported for the neural network
that can be used on systems like Brain-PET. (i.e. processing up to 25 million
events/second). The 2D-ML are being implement in CUDA and reach process-
ing speeds up to 500 events/second [34]. As for the NLS method, no work has
been done for optimizing the speed. Future research on a CUDA or an FPGA
implementation to speed up the implementation are necessary.
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Appendix A: Gamma Ray
Interactions with Matter

Interaction processes

Because gamma ray photons have zero mass and zero charge, they interact dif-
ferently in matter compared to charged particles in the sense that a charged par-
ticle penetrating in matter will interact with all electrons and nuclei on its path.
Gamma rays, due to their electrical neutrality, are not influenced by Coulomb
forces. They will travel some considerable distance without losing any energy be-
fore undergoing an interaction with one single atom, thereby partially or totally
transferring their energy to an electron. These electrons will ultimately deposit
their energy in the medium.

There are four gamma ray interaction mechanisms in matter: pair produc-
tion, Compton scattering (or inelastic scattering), photo electric absorption and
Rayleigh scattering (or elastic scattering). The following introductions are par-
tially based on [12].

Pair production In pair production, a gamma ray interacts with the electric
field of the nucleus of an atom. The photon energy is transformed into an electron-
positron pair. Since the rest mass energy equivalent of an electron and positron is
0.511 MeV, pair production can only happen when the energy of the gamma ray
is more than 1.022 MeV. Photon energy above this threshold is divided between
the electron and positron as kinetic energy. The electron and positron loose their
energy in multiple interactions. The positron will eventually annihilate with an
electron, generating two 511 keV annihilation photons (figure A.1).

Since the highest energy occurring during the PET image formation is 511
keV, pair production is irrelevant for PET.
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Figure A.1 – Pair production results in the production of an electron-positron
pair. The positron will eventually annihilate in two 511 keV gamma rays, figure
from [12].

Compton scattering The process of Compton scattering is an inelastic col-
lision between an incident gamma ray photon and an outer shell electron. The
gamma ray transfers part of its energy to a recoil electron and scatters over an
angle θ. The recoil electron obtaining the energy is ejected from the atom (fig-
ure A.2). The probability distribution of the scattering angle θ (also called the
differential cross section) depends on the initial energy of the gamma rays and is
given by the Klein-Nishina formula :

dσ

dΩ
= 0.5× r2

e × f(ε, θ)2 × [f(ε, θ) + f(ε, θ)−1 − sin2(θ)] (1)

where re is the classical electron radius (2.818 × 10−15 m), ε = E0

511 kev is the
incident photon energy in units of the electron rest energy and f(ε, θ) = 1/[1 +

ε(1 + cos θ)]. Figure A.3 shows the probability distribution for 10 keV, 100 keV
and 511 keV gamma’s. The length from the central point in the plot to one of the
curves presents the probability of scattering along that angle. We can see from
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Figure A.2 – A Compton interaction results in the incoming gamma being scat-
tered over an angle θ and transferring some of its energy to a recoil electron emitted
from the atom. Figure from [12].

the figure that for the 511keV gamma rays, forward scattering is most probable.
Large scattering angles are least likely to occur. As the photon energy drops,
the scattering angle distributions become more symmetric along the forward and
backward direction.

The energy of the scattered photon can be calculated from the energy of the
incident photon and the angle θ of the scattered photon :

Esc =
E0

1 + E0

511 kev (1− cos θ)
(2)

where E0 is the initial gamma energy expressed in keV and Esc is the remaining
energy of the gamma after being scattered. The energy transferred to the ejected
electron increases with the scattering angle. The maximum energy lost by the
incoming gamma occurs during a 180 degree backscatter. In this case a 511 keV
photon looses 340.6 keV, i.e. its energy after back scattering is still 170.3 keV.
Hence it is not possible for a gamma to completely disappear during a Compton
scattering process.
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Figure A.3 – Differential cross section for the Compton interaction at 10 keV, 100
keV and 511 keV

Photo electric absorption In a photo electric absorption process, a gamma
ray photon transfers all its energy to an electron which is ejected from the atom.
The gamma completely disappears (figure A.4). The kinetic energy of the ejected
electron, also called a photo electron, is equal to the incident gamma energy minus
the binding energy of the electron. The electron quickly looses this kinetic energy
to the surrounding material in multiple scattering interactions.

This ionization process creates a vacancy in the atomic electron shell, which is
quickly filled by a free electron or an electron from an outer shell. This filling of
the vacancy is accompanied by the emission of a characteristic X-ray (figure A.4).
Because the energy of these X-rays is usually rather low, they are reabsorbed in
the neighborhood. Sometimes no characteristic X-ray is emitted, but instead a
second electron called Auger electron is ejected from the atom, carrying away the
energy.

Rayleigh scattering In Rayleigh scattering, the incident photon interacts with
and excites the total atom, as opposed to individual electrons in Compton scat-
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Figure A.4 – During a photo electric interaction the incoming gamma is com-
pletely absorbed, resulting in the the ejection of a photo electron and emission of
characteristic X-rays. The wave length λ (or energy) of the characteristic X-rays
depend on the energy difference between the electron orbitals involved in the tran-
sition of the electron filling up the vacancy created by the ejection of the photo
electron. This wave length (energy) is material dependent. Figure from [12].

tering or photoelectric effect. During a Rayleigh scattering event, the complete
energy of the incident photon is given off, causing all of the electrons in the scat-
tering atom to oscillate in phase. The atom’s electron cloud immediately radiates
this energy again, emitting a photon of the same energy but in a slightly different
direction (figure A.5). In this interaction, electrons are not ejected and thus ion-
ization does not occur. In general, the scattering angle increases as the photon
energy decreases.

Interaction cross sections

The probability that a given process occurs upon interaction of a gamma ray with
material is determined by the cross sections of each of the possible interaction
mechanisms. These cross sections depend on the energy of the gamma ray and
the material it is traveling. Figure A.6 shows the cross sections of each of the
three possible interaction processes in water and LSO as a function of energy.

At 511 keV the Compton scattering process is most dominant. In LSO, a 511
keV photon has 66% chance to be Compton scattered upon its first interaction.
The cross section for Compton scattering depends on the electron density of the
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Figure A.5 – Rayleigh scattering is an elastic interaction. The wave length λ2 of
the scattered photon is the same as the wave length λ1 of the incoming photon, i.e.
both photons have the same energy.

material. With the exception of hydrogen, the total number of electrons per gram
is fairly constant for most materials. Hence the probability of Compton scatter
per unit of mass is rather independent of the atomic number Z.

At gamma energies below 400 keV the photo electric absorption is the most
likely interaction to occurs in LSO. In water, Compton scattering remains the
most important process until the gamma energy drops below 30 keV. In general,
the cross section for photo electric absorption varies as Z4

E3 where Z is the atomic
number and E is the energy of the gamma ray. High Z materials will hence increase
the probability of photo electric absorption relative to Compton interaction. This
is important for detectors since it results in more gamma’s depositing all their
energy.

Although Rayleigh scattering is only significant at very low energies (i.e. X-
rays), it still has a probability of 5% to occur for 511 keV gammas interacting in
LSO [67].

The total cross section, i.e the sum of the cross sections of the three interaction
mechanisms, is also shown in figure A.6. This number relates to the mean free
path (MFP) of the gamma ray when it enters the material. The MFP is the
average distance it will travel before undergoing an interaction. Since the cross
sections are expressed in cm2

g , they need to be multiplied by the density of the
material to obtain MFP−1.
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Figure A.6 – Cross sections in water and LSO for photo electric absorption, Comp-
ton interaction and Rayleigh scattering as a function of the gamma energy. The
total cross section (proportional to the mean free path of the gamma) is also shown.
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Abbreviations

ANN artificial neural networks

APD avalanche photo diodes

BGO Bismuth Germanate

CE collection efficiency

COG center-of-gravity

CT computed tomography

CZT Cadmium Zinc Telluride

DOI depth-of-interaction

DQE detection quantum efficiency

ENC equivalent noise charge

ENF excess noise factor

FBP filtered-back projection algorithm

FDG Fluoro-deoxyglucose

FOV the field of view

FWHM full-width at half-maximum

FWTM full-width at tenth-maximum

LOR line-of-response
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MFP mean free path

ML maximum likelihood

MPPC multi-pixel photon counters

MRI magnetic resonance imaging

PDE photon detection efficiency

PET positron emission tomography

PMT photomultiplier tubes

PSF point spread function

QE quantum efficiency

SiPMT silicon photo multipliers

SNR signal-to-noise ratio

SPECT single photon emission computed tomography

US ultrasound
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