

Lecture 2:

- reminder of motivations behind accelerator and experiment
- existing experimental limits on sparticles
- MSSM sparticle searches at the LHC
- MSSM Higgs searches at the LHC

One of the most appealing extensions of the Standard Model:

TeV-scale supersymmetry

[= a symmetry between fermions and bosons, duplicates the SM particle spectrum, but not the couplings]

Solves several problems at once:

- hierarchy problem
- opening towards a theory of gravity
- unification of gauge couplings
- dark matter candidate (=lightest susy particle or LSP)
- allows to explain why the Higgs mechanism works

(radiative EWSB)

Supersymmetry facing experiment -- Feb 09

New sparticles

ETH Institute for Particle Physics

Need to introduce new particles :

leptons (f) quarks (f) gauge bosons (b) Higgs bosons (b)

sleptons (b) squarks (b) gauginos (f) neutralinos higgsinos (f) charginos

 $(\widetilde{l},\widetilde{q})$

$$(\chi_1^0, \chi_2^0, \chi_3^0, \chi_4^0)$$

 $(\chi_1^{\pm}, \chi_2^{\pm})$

(f = fermion, b = boson)

Supersymmetry facing experiment -- Feb 09

How heavy?

How heavy are the sparticles?

independent arguments for 1 TeV scale:

- Gauge coupling unification
- Hierarchy solution
- Dark matter (?)
- EWSB relation

ETH Institute for Particle Physics

Supersymmetry facing experiment -- Feb 09

Filip Moortgat (ETH Zurich)

Supersymmetry facing experiment -- Feb 09

Use SM Higgs as a benchmark for new accelerator/detector design

The Benchmark Reaction: SM Higgs

Supersymmetry facing experiment -- Feb 09

CMS

Filip Moortgat (ETH Zurich)

ETH Institute for

Particle Physics

Why LHC?

- LEP (e+e-) not enough energy for new physics (limited due to synchrotron radiation)
- upgrade: either larger R or larger m (since $-\Delta E \propto \frac{1}{R} \left(\frac{E}{m}\right)^4$)
- so: 1) keep LEP tunnel and go to protons (large m) or
 2) go to a linear collider (large R)
- decided to do 1) first
- energy of LHC determined by bending power magnets:

Design goals of the LHC

Supersymmetry facing experiment -- Feb 09

CMS

Filip Moortgat (ETH Zurich)

ETH Institute for Particle Physics

Simple calculation:

require that the magnetic field compensates the centrifugal effect:

$$F = m \frac{v^2}{R} \iff F = qvB$$
$$\Leftrightarrow$$

E[TeV] = 0.84 B[T]

Supersymmetry facing experiment -- Feb 09

Particle Detectors

ETH Institute for Particle Physics

Very good muon identification and momentum measurement

Trigger efficiently and measure sign of TeV muons dp/p < 10%

High energy resolution electromagnetic calorimetry $\sim 0.5\%$ @ E_T ~ 50 GeV

Powerful inner tracking systems

Momentum resolution a factor 10 better than at LEP

Hermetic calorimetry

Good missing E_T resolution

(Affordable detector)

Supersymmetry facing experiment -- Feb 09

Transparency from the early 90's

The CMS components

ETH Institute for Particle Physics

Supersymmetry facing experiment -- Feb 09

LHC Detectors (especially CMS & ATLAS) are radically different from the ones from the previous generations

High Interaction Rate

pp interaction rate up to **1 billion interactions/s**

Data can be recorded for only ${\sim}10^2$ out of 40 million crossings/sec Level-1 trigger decision takes ${\sim}2\text{-}3~\mu\text{s}$

⇒ electronics need to store data locally (pipelining)

Large Particle Multiplicity

~ <20> superposed events in each crossing

~ 1000 tracks stream into the detector every 25 ns

need highly granular detectors with good time resolution for low occupancy

⇒ large number of channels (~ 100 M ch)

High Radiation Levels

⇒ radiation hard (tolerant) detectors and electronics

Supersymmetry facing experiment -- Feb 09

CMS Level-1 Trigger table (2x10³³)

Trigger	Threshold (GeV or GeV/c)	Rate (kHz)	Cumulative Rate (kHz)
Isolated e/γ	29	3.3	3.3
Di-e/γ	17	1.3	4.3
Isolated muon	14	2.7	7.0
Di-muon	3	0.9	7.9
Single tau-jet	86	2.2	10.1
Di-tau-jet	59	1.0	10.9
1-jet, 3-jet, 4-jet	177, 86, 70	3.0	12.5
$Jet^*E_T^{miss}$	88*46	2.3	14.3
Electron*jet	21*45	0.8	15.1
Min-bias		0.9	16.0
TOTAL			16.0

LEP sparticle production

ETH Institute for Particle Physics

Supersymmetry facing experiment -- Feb 09

Channel	M > (GeV)	ΔM	
$\widetilde{\mathbf{v}}$	43.7	EW measts	LEP
$\widetilde{e} \rightarrow e \chi_1^0$	99	10 GeV	LEP
$\widetilde{\mu} \rightarrow \mu \chi_1^0$	95	10 GeV	LEP
$\widetilde{\tau} \rightarrow \tau \chi_1^0$	85	10 GeV	LEP
$\widetilde{t} \to c \chi_1^0$	95	20 GeV	LEP
$\widetilde{t} \rightarrow b l \widetilde{v}$	96	20 GeV	LEP
$\widetilde{\boldsymbol{b}} \rightarrow \boldsymbol{b} \boldsymbol{\chi}_1^0$	94	20 GeV	LEP
$\widetilde{g} \rightarrow j + E_T^m$	233	msugra	Tevatron
$\widetilde{q} \to j + E_T^m$	318	msugra	Tevatron
$\chi_1^{\pm} \rightarrow W \chi_1^0$	103.5	Large m ₀	LEP
$\chi_1^{\pm} \rightarrow W \chi_1^0$	92.4	Small ΔM	LEP

Tevatron: 2005 numbers, LEP: 2004 numbers

Supersymmetry facing experiment -- Feb 09

Indirect limits on LSP

ETH Institute for Particle Physics

• In MSSM

• In MSUGRA

Supersymmetry facing experiment -- Feb 09

Supersymmetry searches at the LHC

• Inclusive signatures:

discovery, fast but not unambiguous

• Exclusive final states & long term measurements: towards understanding the underlying model

Supersymmetry facing experiment -- Feb 09

ETH Institute for Particle Physics

General characteristics of R-parity conserving SUSY:

- sparticles pair produced and LSP stable
 → large amount of missing transverse energy
- coloured sparticles are copiously produced and cascade down to the LSP with emission of many hard jets and sometimes leptons

- NLO cross sections at LHC
 - NLO calculation is important: $\sigma_{NLO} \sim (1.1-1.9) \sigma_{LO}$
 - Remaining scale dependence
 ~15% (uncertainty)
 - At 1 TeV, summed $\sigma > 1$ pb
 - 1 fb at ~2.5 TeV

Slepton pair production

- Slepton pair production at NLO
 - Drell-Yan process
 mediated by Z* or W*
 - With QCD corrections at LHC $\sigma_{NLO} \sim (1.25 1.35) \sigma_{LO}$
 - Cross section is small
 <1 fb at ~500 GeV

Supersymmetry facing experiment -- Feb 09

Filip Moortgat (ETH Zurfch)

ETH Institute for Particle Physics

CMS

Chargino/neutralino production

ETH Institute for Particle Physics

- Chargino/neutralino direct
 production
 - With QCD corrections at NLO σ_{NLO} ~(1.1-1.4) σ_{LO}
 - Interesting: $\chi_2^0 \chi_1^{\pm}$ with $\chi_2^0 \rightarrow \chi_1^0 l^+ l^- \chi_1^{\pm} \rightarrow \chi_1^0 l^{\pm} \nu$
 - \rightarrow trilepton final state

Inclusive SUSY

ETH Institute for Particle Physics

- jets + E_T^{miss}
- 1,2,3 lepton + E_T^{miss}
- opposite sign (OS) or same sign (SS) di-leptons
- often several topologies simultaneously visible

Supersymmetry facing experiment -- Feb 09

Filip Moortgat (ETH Zurfch)

A typical SUSY selection

ETH Institute for Particle Physics

Event selection :

- large missing E_T (MET): O(> 200 GeV) (→ LSP)
 MET challenging to control at startup
- at least 3 hard jets (→ cascade decays)
 3 may not always be optimal
- N leptons (according to investigated topology) growing N: reduces QCD background
- angular or event shape variables for background rejection top background probably the most challenging

Main backgrounds: tt+jets, W+jets, Z+jets, QCD (multijet)Supersymmetry facing experiment -- Feb 09Filip Moortgat (ETH Zurtch)

Jets + MET

ETH Institute for Particle Physics

N_{leptons}=0 : largest signal cross section, but beware of QCD!

Event Selection:

Efficiency for e.g. SPS1a: 13%

- MET > 200 GeV
- \geq 3 jets (| η | < 1.7/3/3) with E $_{\rm T}$ > 180/110/30 GeV
- HT (= $E_{T,j2}$ + $E_{T,j3}$ + $E_{T,j4}$ +MET) > 500 GeV
- indirect lepton veto
- cleanup and QCD rejection (see next slide)

Main backgrounds:

- QCD multijets: MET due to mismeasurements or jet resolution
- Z+jets: Z→vv irreducible
- tt+jets: hadronic or lost lepton(s)
- W+jets: hadronic or lost lepton

Early data: cannot trust simulation -> determine backgrounds from data Supersymmetry facing experiment -- Feb 09

(GeV)

m_{1/2}

Signature: $E_T^{miss} + jets$

- $\sigma \sim 1$ pb at 1 TeV \rightarrow physics for startup
- significant reach after 1 yr
- with 300 fb-1, reach squarks and gluinos up to ~ 2.5 TeV
- (need good understanding of detector and backgrounds!)

200 fb 1 was also group when

Supersymmetry facing experiment -- Feb 09

mSUGRA reach in E_T^{miss}+ jets final state

QCD rejection:

CMS

• MET in QCD is due to mismeasured jets

QCD rejection and cleanup

0.175

• Suppression via topological cuts:

$$\begin{aligned} \mathsf{R}_{1,2} = &\sqrt{\Delta \Phi_{1,2}^2 + (\pi - \Phi_{2,1})^2} > 0.5 \\ &\text{with } \Delta \Phi_{1,2} = & |\Phi_{j1,j2} - \Phi(\mathsf{MET})| \end{aligned}$$

i.e. MET is along or opposite jet

Cleaning against beam halo, cosmics, calo noise:

- good primary vertex
- event electromagnetic fraction:
- event charged fraction:

Supersymmetry facing experiment -- 1 CO UP

0.5

OCD

ETH Institute for Particle Physics

- previous studies (Physics TDR) estimated backgrounds using Monte Carlo
- now, data-driven methods being explored
- often "ABCD" method used:

Avoid signal contamination in A,B,D

- variables for hadronic search: MET, Rsum, $\Delta \phi(jj)$, $\Delta \phi(hemisphere)$, ...
- variables for leptonic search: lepton isolation, impact parameter, MET, ...
- correlations to be studied

Irreducible: Z →υυ

Data-driven estimation from Z+jets

"standard candle": use $Z \rightarrow \mu\mu$

- replace leptons by neutrinos

(and correct for acceptance using MC)

- total uncertainty ~20% for 1fb⁻¹ statistics limited:

 $BR(Z \rightarrow \mu\mu) = 1/6 BR(Z \rightarrow \nu\nu)$

New: data-driven estimation from $W,\gamma+jets$ assumption: bosonic events at high Pt look similar \rightarrow use $W,\gamma+jets$ - gain in statistics (\rightarrow 100 pb⁻¹ analyses) $\sigma(W+2j) = 3 \sigma(Z+2j) = 0.8 \sigma(\gamma+2j)$ - complementary to the above (other backgrounds/other triggers) - beware of signal contamination Supersymmetry facing experiment -- Feb 09

From W+jets	35 ± 10 (stat) ± 8 (sys)) ± 3 (theory)
rioni rijeta	$2^{2} \pm 3 (300) \pm 3 (393)$	

New: di-jet + MET

Robust extension of full-hadronic search

Event selection:

- 2 jets with $P_T > 50$ GeV, lepton veto
- $P_{T,j1} + P_{T,j2} > 500 \text{ GeV}$
- angular/acceptance cuts for cleaning
- new variable (Randall/Tucker-Smith):

$$\alpha = \frac{E_{T\,j2}}{M_{j1j2}} = \frac{E_{T\,j2}}{\sqrt{2E_1E_2(1-\cos\theta)}} > 0.55$$

Note:

- calorimetric MET not (directly) used
- dominant backgrounds: QCD and Z→vv; estimate from data

SPS1a discovery within 100 pb⁻¹

Lepton + jet + MET

Event selection:

- \geq 1 isolated muon with
- $P_T > 30 \text{ GeV}$
- $E_{T, j1} \& E_{T, j2} > 440 \text{ GeV}, E_{T, j3} > 50 \text{ GeV}$
- MET > 130 GeV
- single/di-muon trigger
- angular cuts for MET cleaning

Cut optimization via genetic algorithm on 10fb⁻¹

Supersymmetry facing experiment -- Feb 09

Same-sign dileptons

Background:

 \rightarrow ask for 2 SS leptons + hard jets + E_T^{miss}

Supersymmetry facing experiment -- Feb 09

Same-sign leptons + jet + MET D ETH Institute for Particle Physics

Event selection:

- \ge 2 isolated same-sign muons with P_T > 10 GeV
- \geq 3 jets with E_T > 175/130/55 GeV
- MET > 200 GeV
- single/di-muon trigger

Note:

- almost no SM background $\sigma(W+W+)$: 17 fb
- muon trigger expected to be most robust at startup
- complementary to hadronic channel

SUSY discovery potential

To summarize: many complementary channels for 1 fb⁻¹:

Supersymmetry facing experiment -- Feb 09

Filip Moortgat (ETH Zurich)

ETH Institute for Particle Physics

ETH Institute for Particle Physics

Need large calorimeter coverage and no cracks to avoid "fake" missing- ${\rm E}_{\rm T}$

Et sum

ETH Institute for Particle Physics

Filip Moortgat (ETH Zurich)

• so far: inclusive measurements fast discovery, but does not unambiguously single out SUSY

• need to reconstruct sparticle decay chains and masses involved need to be prepared for all possible final states

• goal is to measure cross sections, BR's (→ couplings) and even spin of the sparticles LHC can not only discover SUSY, but also MEASURE its properties (if nature is kind)

Filip Moortgat (ETH Zurich)

Neutralino2 decay signatures

ETH Institute for Particle Physics

Filip Moortgat (ETH Zurtch)

- Final state: 2 high p_t isolated leptons
 - 2 high p_t jets
 - missing E_t

Supersymmetry facing experiment -- Feb 09

Kinematic endpoint technique: construct lepton/quark upper/lower endpoints and relate them to the masses in the decay chain

$$\begin{array}{ccc} E.g.: & \widetilde{q} \rightarrow \chi_2^0 q \\ & & & \downarrow \widetilde{\ell}^{\pm} \ell^{\mp} \rightarrow \chi_1^0 \ell^+ \ell^- \end{array}$$

4 unknown masses: $M_{\tilde{q}}, M_{\chi_2^0}, M_{\tilde{l}}, M_{\chi_1^0}$ 4 endpoints: $M(ll)^{\max}, M(llq)^{\max}, M(l2q)^{\max}, M(llq)^{\max}$

→ all masses can be determined

Usually non-linear relations \rightarrow all masses, not just differences Extra endpoints, or start from gluino \rightarrow constraints

• M(II): very sharp end point,

triangular shape (due to spinless slepton)

$$M_{ll}^{\max} = M_{\chi_2^0} \sqrt{\left(1 - \frac{M_{\tilde{l}}^2}{M_{\chi_2^0}^2}\right)\left(1 - \frac{M_{\chi_1^0}^2}{M_{\tilde{l}}^2}\right)}$$

Z peak

• Also use shape information!

• Fit shape + endpoint:
$$m_{\ell\ell}^{max} = m_{\tilde{\chi}_2^o} \sqrt{1 - \frac{m_{\tilde{\ell}_R}^2}{m_{\tilde{\chi}_2^o}^2}} \sqrt{1 - \frac{m_{\tilde{\chi}_1^o}^2}{m_{\tilde{\ell}_R}^2}}$$

- Data-driven background estimate: tt and diboson background from eµ data (BR(ee)=1/2 BR(eµ))
- Unbinned fit to data (7 parameters): 50

 $F(m) = N_{sig}S(m) + N_{bkg}B(m) + N_ZZ(m)$

Signal Model Bkg from

$$\Delta m_{ee}^{max} = \pm 1.07(stat.) \pm 0.36(syst.)GeV$$
$$\Delta m_{\mu\mu}^{max} = \pm 0.75(stat.) \pm 0.18(syst.)GeV$$

Supersymmetry facing experiment -- Feb 09

 $ilde{\chi}^o_2
ightarrow \ell^\pm \ell^\mp ilde{\chi}^o_1$

ETH Institute for Particle Physics

→Can distinguish M(l1q)^{max} from M(l2q)^{max}

• M(llq):

$$M_{llq}^{\max} = M_{\tilde{q}} \sqrt{\left(1 - \frac{M_{\chi_2^0}^2}{M_{\tilde{q}}^2}\right)\left(1 - \frac{M_{\chi_1^0}^2}{M_{\chi_2^0}^2}\right)}$$

ETH Institute for Particle Physics

Choose dilepton pairs close to the edge; then

 $M_{\widetilde{q}}$

$$\vec{p}_{\tilde{\chi}_2^0} \approx (1 + M_{\tilde{\chi}_1^0} / M_{\ell\ell}) \vec{p}_{\ell\ell}$$

assuming $\widetilde{\chi}_1^0$ can be at rest in the frame of $\widetilde{\chi}_2^0$

 \rightarrow can reconstruct

• often $\widetilde{\chi}_2^0$ decays to taus instead of electrons/muons

• can we use hadronic tau final states?

- Higgs peak can be reconstructed from 2 b-jets
 - → could be a h⁰ discovery channel ! (even for light H⁰ and A⁰)
- Z⁰ reconstructed from di-lepton decay
- Decay chain is shorter than for dileptons →
 e.g. start from gluino M(q₁h⁰),M(q₂h⁰),M(qq),M(qqh⁰) to determine 4 masses

GMSB signatures

ETH Institute for Particle Physics

- In GMSB, the light gravitino is the LSP
- \rightarrow Who is NLSP?
- Neutralino is NLSP

 $\chi_1^0 \to \gamma + \widetilde{G}$

• Stau is NLSP

 $\widetilde{\tau}_1 \rightarrow \tau + \widetilde{G}$

→ $E_T^{miss} + \gamma$, τ or long-lived particles → dE/dx and TOF

TOF measurement in the CMS muon DT's

Supersymmetry facing experiment -- Feb 09

Make use of spin correlations in decay of squark:

washes out for antisquarks, but in *pp* colliders \rightarrow more squarks produced than antisquarks

SUSY spin measurements (2)

CMS

Supersymmetry facing experiment -- Feb 09

Filip Moortgat (ETH Zurich)

ETH Institute for Particle Physics

Lecture 2b:

- reminder of MSSM Higgs phenomenology
- existing experimental limits on Higgs bosons
- Higgs searches at the LHC
- (ongoing Tevatron searches ...)

Problem with the SM: all particles are massless. Introduction of mass terms ruins the gauge invariance. Oops.

Solution proposed by Brout-Englert-Higgs:

- assume the existence of a scalar field that pervades the universe
- particles interacting with this field acquire mass the stronger the interaction, the larger the mass
- the particle associated with the Higgs field is the Higgs boson

Argument 2 for extra "scalar" \oint

ETH Institute for Particle Physics

Other – independent – argument for a new (effectively) scalar particle:

 $\sigma (W^+W^- \rightarrow W^+W^-)$ diverges with energy!

We need something to cancel the divergence: scalar particle H

Filip Moortgat (ETH Zur⁵ch)

In order not to violate unitarity, in the previous formula:

 $M_H \lesssim 870~{
m GeV}$

This argument lead to the minimum physics requirement for a post-LEP collider:

The next accelerator must be able to produce particles up to a mass of ~1 TeV

Supersymmetry facing experiment -- Feb 09

The minimal Higgs Mechanism D ETH Institute for Particle Physics

1964: Higgs, Englert and Brout propose to add a complex scalar doublet field to the Lagrangian

$$\mathcal{L} = (\partial^\mu \phi^\dagger) (\partial_\mu \phi) - \mu^2 \mid \phi \mid^2 - \lambda \mid \phi \mid^4$$

EWSB if μ^2 negative!

Supersymmetry facing experiment -- Feb 09

Filip Moortgat (ETH Zur⁵c⁸)

Higgs mass limits from theory

The triviality (upper) bound and vacuum stability (lower) bound as function of the cut-off scale Λ

"triviality" : Higgs self-coupling remains finite $\lambda(Q^{2}) = \frac{\lambda(Q_{0}^{2})}{1 - \lambda(Q_{0}^{2})/16\pi^{2}\log(Q^{2}/Q_{0}^{2})}$ "vacuum stability" : Higgs potential has a stable minumum V(ϕ) NOT

Higgs in MSSM

- In MSSM: 2 Higgs doublets needed
 - to cancel the gauge anomaly (due to higgsinos)
 - to give mass to both up and down type fermions
- 2 Higgs fields → 8 degrees of freedom
 3 are used to make W[±] and Z⁰ massive
 MSSM contains 5 physical Higgs states
 - 2 charged scalars H[±]

Mixture of H_d^- and H_u^+ , fixed by tan β

I neutral CP-odd A⁰

Mixture of $Im(H_d^{0})$ and $Im(H_u^{0})$, fixed by tan β

2 neutral CP-even h⁰ and H⁰

Mixture of $\text{Re}(H_d^{0})$ and $\text{Re}(H_u^{0})$, with mixing angle α

$$H_{d} = \begin{pmatrix} H_{d}^{0} \\ \vdots \\ H_{d}^{-} \\ \vdots \end{pmatrix} \qquad H_{u} = \begin{pmatrix} H_{u}^{+} \\ \vdots \\ H_{u}^{0} \\ \vdots \end{pmatrix}$$
$$\tan \beta = \frac{\langle H_{u}^{0} \rangle}{\langle H_{d}^{0} \rangle}$$

Radiative EWSB

ETH Institute for Particle Physics

Radiative EWSB

All parameters RG evolve, however. In detail, this is a complicated system of differential equations. But schematically, at 1-loop:

$$\begin{array}{ll} \frac{dg}{dt} &\sim \ \frac{1}{16\pi^2}g^3 \\ \frac{dy}{dt} &\sim \ \frac{1}{16\pi^2}\left[g^2y - y^3\right] \\ \frac{dM}{dt} &\sim \ \frac{1}{16\pi^2}g^2M \\ \frac{dA}{dt} &\sim \ \frac{1}{16\pi^2}\left[-g^2M - y^2A\right] \\ \frac{dm^2}{dt} &\sim \ \frac{1}{16\pi^2}\left[g^2M^2 - y^2A^2 - y^2m^2\right] \end{array}$$

where $t \equiv \ln(Q_0/Q)$, and *positive* numerical coefficients have been neglected.

Gauge interactions raise m^2 , Yukawa interactions lower m^2 .

Recall

$$\mathcal{L} \supset y_{ij}^u \bar{H}_u \bar{Q}_i \bar{U}_j + y_{ij}^d \bar{H}_d \bar{Q}_i \bar{D}_j + y_{ij}^e \bar{H}_d \bar{L}_i \bar{E}_j$$

Top Yukawa coupling enters RGE for H_u but not for $H_d.$ The heavy top quark drives $m_{H_u}^2$ negative.

Example RG trajectories:

Squarks/sleptons (green), gauginos (blue), Higgses (red)

Filip Moortgat (ETH Zurech)

• From scalar potential, tree level masses are:

$$m_{H^{\pm}}^{2} = M_{W}^{2} + m_{A}^{2}$$

$$m_{H,h}^{2} = \frac{1}{2} (m_{A}^{2} + M_{Z}^{2}) \pm \frac{1}{2} \sqrt{(m_{A}^{2} + M_{Z}^{2})^{2} - 4m_{A}^{2} M_{Z}^{2} \cos^{2} 2\beta}$$

- Higgs masses depend on only 2 parameters: m_A and $tan\beta$
 - $tan\beta \rightarrow 1$: $m_h = 0$, $m_H^2 = M_Z^2 + m_A^2$
 - $\tan\beta \rightarrow \infty: m_h, m_H^0 = \min, \max(M_Z, m_A)$
- Mass hierarchy at tree level:
 - 0 $\leq m_h \leq M_Z |\cos 2\beta|$
 - $m_h \leq m_A \leq m_H^0$
 - $m_H^0 \ge M_Z$
 - $m_{H^{\pm}} \ge M_{W}$
- Expect light h⁰ → observable at LEP2
 But radiative corrections are large, especially on m_h

from b/t yukawa couplings: $1.2 \le \tan \beta \le 65$

Top loop corrections: 1-loop leading log approximation

$$\Delta(m_h^2) = \frac{3m_t^4}{4\pi^2 v^2} \ln\left(\frac{m_{\tilde{t}_1}m_{\tilde{t}_2}}{m_t^2}\right)^{\frac{1}{2}}$$

- Introduces a dependence on top and stop masses
- More accurate calculation: also on stop mixing $X_t = A_t \mu \cot\beta$
- In MSSM, m_h⁰ has upper bound
 - Increases with tanβ
 - Increases from min X_t/M_{SUSY}=0 To max (X_t/M_{SUSY})²=6

m_h ≤130 GeV

(for M_{SUSY} = 1 TeV, m_t=175 GeV) → Lower than preferred SM range

Supersymmetry facing experiment -- Feb 09

- MSSM contains 2 Higgs doublets, therefore 5 physical Higgs states: h^0 , H^0 , A^0 , H^{\pm} \sim degenerate in mass for high m_A \rightarrow looks like H_{SM} (but $m_h < 130$ GeV)
- masses & couplings depend at tree level only on 2 parameters, say $m_A \& \tan\beta$: (1< $\tan\beta$ <60)

$$\begin{split} m_{H^{*}}^{2} &= m_{A^{0}}^{2} + m_{W^{*}}^{2} \\ m_{h^{0},H^{0}}^{2} &= \frac{1}{2} \left(m_{A^{0}}^{2} + m_{Z^{0}}^{2} \mp \sqrt{(m_{A^{0}}^{2} + m_{Z^{0}}^{2})^{2} - 4m_{Z^{0}}^{2} m_{A^{0}}^{2} \cos^{2} 2\beta} \right) \end{split}$$

• radiative corrections can be important (e.g. for h⁰ !!)

Supersymmetry facing experiment -- Feb 09

Filip Moortgat (ETH Zurich)

- SM Higgs (LEP)
 - M_H>114.4 GeV @95% CL
- MSSM neutral Higgs bosons (LEP)
 - M_h, M_A>92.9, 93.3 GeV @95% CL
 - $M_{H} \pm > 89.6 \text{ GeV} @95\% \text{ CL for } BR(M_{H} \pm \rightarrow \tau \nu) = 1$
 - $M_{H} \pm > 78.6 \text{ GeV} @95\% \text{ CL}$ for any BR
- Electroweak fits to all high Q² measurements give:
 - $M_{\rm H} = 84^{+34} 26 \, {\rm GeV}$
 - M_H<154 GeV @ 95% CL

ETH Institute for Particle Physics

M_t=170.9 GeV M_w=80.398 GeV

Supersymmetry facing experiment -- Feb 09

q

Supersymmetry facing experiment -- Feb 09

Filip Moortgat (ETH Zurich)

ETH Institute for Particle Physics

- Higgs couples to m_f^2 \rightarrow b quarks
- until WW and ZZ modes open up (2/1 ratio)
- decay into yy through loops

Supersymmetry facing experiment -- Feb 09

Supersymmetry facing experiment -- Feb 09

 $h \rightarrow \gamma \gamma$

Most promising channel in the range m_H < 150 GeV

Backgrounds are large (2pb/GeV), H natural width is small (~MeV) excellent mass resolution required

 $\sigma_{\rm m}/{\rm m} = 0.5 \left[\sigma_{\rm E1}/{\rm E_1} \oplus \sigma_{\rm E2}/{\rm E_2} \oplus \cot(\theta/2)\Delta\theta\right]$ ⇒ energy resolution and precise vertex localisation

Typical Cuts 2 isolated photons – p_T > 25, 40 GeV with $|\eta| < 2.5$ No track or em cluster with $p_T > 2.5$ GeV in a cone size $\Delta R = 0.3$ around γs

Signal: ~ 1000's of events

CMS HLT Summary: 2x10³³ cm⁻²s⁻¹

Trigger	Threshold (GeV or GeV/c)	Rate (Hz)	Cuml. rate (Hz)
Inclusive electron	29	33	33
Di-electron	17	1	34
Inclusive photon	80	4	38
Di-photon	40, 25	5	43
Inclusive muon	19	25	68
Di-muon	7	4	72
Inclusive tau-jet	86	3	75
Di-tau-jet	59	1	76
1-jet * E _T ^{miss}	180 * 123	5	81
1-jet OR 3-jet OR 4-jet	657, 247, 113	9	89
Electron * jet	19 * 45	2	90
Inclusive b-jet	237	5	95
Calibration etc		10	105
TOTAL 105			

Supersymmetry facing experiment -- Feb 09

Main Backgrounds

Irreducible: qq annihilation and gg 'box'

Reducible: y-jet and jet-jet

 $\frac{\sigma_{jj}}{\sigma (H \to \gamma \gamma)} \sim 10^8$

A need large γ -jet separation (essentially γ - π^0 separation) to reject jets faking photons

 $h \rightarrow \gamma \gamma$

Background rejection:

Signal:

Higgs couplings to fermions:

- proportional to mass $\rightarrow 3^{rd}$ generation favoured
- tan β enhances couplings of H^0/A^0 to down-type fermions

Conventional MSSM A/H channels

ETH Institute for Particle Physics

... so main production mechanism for A^0 and H^0 :

Supersymmetry facing experiment -- Feb 09

CMS,

Filip Moortgat (ETH Zurich)

A/H branching ratios

(HDECAY)

Supersymmetry facing experiment -- Feb 09

- 1. lepton + lepton
- 2. lepton + hadron : $M_A < 350 \text{ GeV}$
- 3. hadron + hadron : $M_A > 350 \text{ GeV}$

Supersymmetry facing experiment -- Feb 09

L1 jet/ τ algorithm

ETH Institute for Particle Physics

Input from E/HCAL: **Programmable 8-bit** nonlinear scale converted to 10-bit linear scale for sums to obtain jet E.

Jet or τE_{τ}

- 12x12 trigger tower E_T sums in 4x4 region steps with central region > others,
 central region above a programmable threshold

τ algorithm

• redefine jet as τ -jet if none of the nine 4x4 region τ -veto bits are on Output

• top 4 τ -jets and top 4 jets in central rapidity, and top four jets in forward rapidity

CMS

Signal: 2τ jets + 2 soft b jets

Main backgrounds:

Main rejection techniques:

QCD jets (2 fake τ 's)

W + jets (1 real + 1 fake τ)

t t (2 real τ 's + 2 hard b's)

Z, $\gamma^* \rightarrow \tau \tau$ (2 real τ 's) τ -jet ID, E_T^{miss} cut

 τ -jet ID, τ -tagging (IP, vertex)

central jet veto

b-tagging

Supersymmetry facing experiment -- Feb 09

 $A/H \rightarrow \tau\tau: mass reconstruction \Phi^{\text{ETH Institute for Particle Physics}}$

Assume neutrinos are emitted in the direction of the tau ($M_{\tau} \leq E_{T}^{\tau}$):

Supersymmetry facing experiment -- Feb 09

 $\sigma(M_H) \sim \sigma(E_t^{miss})/sin(\Delta \phi)$! back-to-back is the worst case for the mass reconstruction

ETH Institute for Particle Physics

CMS

 $A/H \rightarrow \tau\tau$: mass resolution (2) (

ETH Institute for Particle Physics

Mass resolution for τ channels:

CMS

for lower Higgs masses, the mass resolution improves with factor 2 by tagging associated b-jet

Supersymmetry facing experiment -- Feb 09

m_A known $\rightarrow \tan \beta$ measurement from rates:

At large tan(β), σ x Br ~ tan²(β)_{eff} f(M_A) at fixed μ , M₂, A_t, M_{SUSY}

 $N_{S} = tan^{2}(\beta)_{eff} f(M_{A}) L \epsilon_{sel}$

 $tan(\beta) = tan(\beta)_{mes} + - \Delta_{stat} + - \Delta_{syst} + - \Delta_{MCgen}$

 $\Delta_{syst} = 0.5 \ sqrt(\Delta L^2 + \Delta \sigma_{th}^2 + \Delta Br_{th}^2 + \Delta \sigma(\Delta M_H)^2 + \Delta \varepsilon_{sel}^2 + \Delta B^2)$

 $\Delta \sigma_{th} = 20$ % due to NLO scale dependence $\Delta Br_{th} = 3$ % uncertainties of SM input parameters $\Delta L = 5$ % luminosity uncertainty $\Delta \sigma (\Delta M_{H}) = 10-12$ % due to mass measurement at 5 σ discovery limit $\Delta B = \Delta N_{B} / N_{S} = 10$ % at 5 σ discovery limit (preliminary)

$$\Delta \varepsilon_{sel}^{2} = \Delta \varepsilon_{calo}^{2} + \Delta \varepsilon_{b tag}^{2} + \Delta \varepsilon_{\tau tag}^{2}$$
$$\Delta \varepsilon_{b tag} = 2.0 \% \text{ (preliminary)}$$
$$\Delta \varepsilon_{\tau tag} = 2.5 \% \text{ (preliminary)}$$
$$\Delta \varepsilon_{calo} = 2.9 \% \text{ (preliminary)}$$

Supersymmetry facing experiment -- Feb 09

$A/H \rightarrow \mu\mu$

A/H $\rightarrow \mu\mu$ branching ratio only ~ 3 . 10⁻⁴ but easy triggering and excellent μ momentum resolution

feasable at high tan β and low $m_A \dots$

Exploit **bbµµ** signature (effective against DY background)

need excellent b-tagging

Filip Moortgat (ETH Zurich)

ETH Institute for Particle Physics

 $\mu\mu$ mass resolution of 1% :

- most precise determination of m_{H} (and tan β)
- fit to $\mu\mu$ signal shape might allow $\Gamma_{\rm H}$ measurement

Supersymmetry facing experiment -- Feb 09

Charged Higgs bosons

Production:

- in tt events with t -> bH[±] if $m_{H^+} < m_{top}$
- through $gg \rightarrow tbH^{\pm}$ if $m_{H^+} > m_{top}$

For $m_{H^+} > m_{top}$: can use extra top in the event! (the associated b is usually at large rapidities)

Decay channels:

- $m_{H^+} < m_{top}$: BR(H[±] $\rightarrow \tau \nu$) ~100% - $m_{H^+} > m_{top}$ and large tan β (>10): H[±] -> tb dominates BR(H[±] -> $\tau \nu$) sizeable ~10%

Advantage with $H^{\pm} \rightarrow \tau \nu$, $\tau \rightarrow$ hadrons+n: Helicity correlations can be exploited to suppress irreducible backgrounds from tt, Wt and W+jets with W-> $\tau \nu$

Supersymmetry facing experiment -- Feb 09

 $\frac{g}{g}$

ETH Institute for Particle Physics

$H^{\pm} \rightarrow \tau v$

Strategy:

- reconstruct hadronic τ
- reconstruct hadronic top (t→bjj)

Main backgrounds: tt, Wtb, W + jets

W and H[±] have different spin \rightarrow exploit τ polarization effects !!

Supersymmetry facing experiment -- Feb 09

Harder pions from $H^+ \rightarrow \tau^+ \nu$ than from $W^+ \rightarrow \tau^+ \nu$ (through $\tau \rightarrow \pi^+ \nu$ and the longidutinal components of ρ and a_1)

Suppression of backgrounds with genuine τ 's from W-> $\tau\nu$ with a cut in $p^{\pi}/E^{t jet}$

Efficiency with $p^{\pi}/E^{t \text{ jet}} > 0.8$: Signal ($m_{H\pm} = 400 \text{ GeV}$) ~45% tt background ~2% (fast simulation)

Supersymmetry facing experiment -- Feb 09

 $H^{\pm} \rightarrow \tau \nu$: mass reconstruction

τ decays hadronically \rightarrow only 1 neutrino

Supersymmetry facing experiment -- Feb 09

2% mass precision possible by fitting Jacobian peak

ETH Institute for Particle Physics Quasi two-body decay between the τ jet and E_t^{miss} in fully hadronic events \rightarrow almost background-free situation in $m_T(\tau$ -jet, $E_t^{\text{miss}})$

CMS

 $H^{\pm} \rightarrow \tau v$: mass reconstruction

Supersymmetry facing experiment -- Feb 09

Filip Moortgat (ETH Zurich)

ETH Institute for Particle Physics

 $pp \rightarrow tH^{\pm} + X. H^{\pm} \rightarrow \tau \nu$

 $m_{H+} = 400 \text{ GeV}/c^2$ $\tan\beta = 40$

Discovery reach

ETH Institute for Particle Physics

