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Theory versus Experiment 
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Dangerous cocktail !!! 
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The basics in these lectures 

Part1 : “Theory meets experiment” 
①  Our QFT description of Nature is a stochastic one 
②  General stochastic distributions in physics 
③  From theoretical to experimental distributions 
④  ... and back: unfolding techniques 
⑤  Examples from the LHC at CERN 

Part 2 : “Experiment meets theory” 
 

①  Experimental aspects to accumulate experimental data 
②  Selection of the dedicated signal 
③  Performing measurements & parameter estimation 
④  Claiming a discovery of new physics or setting limits 
⑤  Examples from the LHC at CERN 
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Lecture 1 
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“Theory meets experiment” 

①  Stochastic description of Nature 
Stochastic variables, distributions, examples 

 

②  General stochastic distributions in physics 
Bernouilli, Binomial, Poisson, Gaussian, Central Limit 
Theorem 
 

③  From theoretical to experimental distributions 
Nuisance of experiment, convolution, Monte Carlo 
simulation, some reconstruction techniques 
 

④  A basic introduction to unfolding techniques 

⑤  An example from the LHC at CERN 
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Deterministic vs Stochastic 

Particles through an 
electromagnetic field 
(example a photonmultiplier 
tube) 

Rutherford scattering  

Deterministic Stochastic
Each “experiment” is predictable 

(exact) 
Set of “experiments” is predictable 

(distributions) 

�F = q ·
�

�E + �v � �B
�

d�
dcos� �

1
(1�cos�)2
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Nature is stochastic! Be aware that large systems are difficult to 
model with a deterministic equation, hence 

stochastic models are used predicting general 
parameters of the system … 

Think about your lectures on Statistical Physics 



Pag. 9 Theory versus Experiment - Experimental Techniques in Particle Physics - Jorgen D'Hondt (Vrije Universiteit Brussel) 

The micro-scale Nature is stochastic! 

•  Fundamental interactions are described on the level of quantum 
mechanics which is stochastic. Quantum Field Theory predicts 
cross-sections and distributions of kinematic variables. 

•  Prediction of the expected amount of events observed in 
collisions and the expected kinematic distributions. But not the 
prediction of the exact result of one single experiment. 

Quantum  
Field  

Theory 

�NLO(pp� tt̄)

d�NLO(pp�tt̄)
dmtt̄
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Distributions of stochastic variables 

•  A stochastic variable X denotes the outcome of one experiment  
and usually obtains a real value (   ) after its measurement. 

•  When repeated infinite times in the same conditions, a 
distribution is obtained (can be discrete or continuous). 

R

distribution (PDF) cumulative distribution 

FX(x|��) = P (X � x|��)fX(x|��) = d
dxFX(x|��)

•  fX(x) only obtained with 
infinite experiments, 
hence only theoretical 

•  Describe distribution 
with its momenta µk(X) 

µk(X) =
�
� xkfX(x)dx
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Distributions of stochastic variables 

•  The collection of momenta {µk(X)|k={1…∞}} gives a full 
description of the distribution fX(x) 

•  Most distributions in physics have only few free momenta (the 
others are zero or can be expressed in terms of other momenta) 

•  Definition of expectation value: 
   Typical examples of theoretical parameters of a distribution: 

   These parameters are unknown and have to be measured 
 

Examples of stochastic variables (X): number of collision events in 
a dataset of 1/fb, reconstructed value of         per event, … 

µX � µ1(X) = E[X1] =
�
� x1fX(x)dx

V ar[X] � E[X2]� (E[X])2 =
�
�(x� E[X])2fX(x)dx

E[g(X)] �
�
� g(x)fX(x)dx

mtt̄
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Distributions in physics 

Which distributions are relevant to compare theory with 
experiment in particle physics? 
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Binomial distribution 

Starts from a very simple Bernouilli distribution: the stochastic 
variable can only take two values (A or B) 
 
   P(A) = 1 – P(B) 

Now you do this several times 

P(A) = x 
P(B) = y 

P(left) = x P(right) = y 
1st 

2nd  
3rd  
4th  

5th  
6th  

7th  

(x + y)N =
�N

i=0
N !

(N�i)!i!x
iyN�i

binomial distribution 
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Binomial distribution 

•  One parameter to describe the full distribution P(i): N (number 
of Bernouilli experiments) 

(x + y)N =
�N

i=0
N !

(N�i)!i!x
iyN�i

PN (i) = N !
(N�i)!i!p

i(1� p)N�i

µX = E[X] = N.p

V ar[X] = N.p.(1� p)

p = probablity for result A (eg. ball goes left) 

Theory versus Experiment - Experimental Techniques in Particle Physics - Jorgen D'Hondt (Vrije Universiteit Brussel) 14 
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Binomial distribution 

•  Typical exercise: 

•  A particle detector has an efficiency of 90% per detector layer. 
How many detector layers do we need to put on top of each 
other to get a probability of 99% to detect the particle? 
Detecting the particle means, that we have to “see” the particle 
in at least 3 layers. 

1
2
3
4
…
N

Theory versus Experiment - Experimental Techniques in Particle Physics - Jorgen D'Hondt (Vrije Universiteit Brussel) 15 
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Gaussian distribution 

•  The most important distribution in physics is the Gaussian one 
which is a rescaling of a binomial stochastic variable X ~ B(n,p) 

•  General Z ~ N(µ,σ2) 

Z = X�n.p�
n.p.(1�p)

fZ(z) = 1�
2�

exp(� 1
2z2)

fZ(z) = 1�
2��2 exp(� 1

2

� z�µ
�

�2)

n��
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Poisson distribution 

Stochastic variable X describes how many events happen in a 
fixed time interval (eg. how many collisions in 1/fb) 
 
 
 
 

PY (k) = �k

k! e
�� � = E[X] = V ar[X]one parameter 

 
histogram as example 

�
�

�

Poisson distribution 

�
�

�
�

�
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Central Limit Theorem 

Consider independent stochastics Xi following all a 
random distribution fXi(xi). Each stochastic variable 
Y being a linear combination of these 

Will follow a normal distribution (when the 
variance Var[Y] is not dominated by one variance 
Var[Xi]). 
 
 
Hence the theory of uncertainties can be 
developed assuming the measurable stochastic 
follows a Gaussian distribution. 

Y =
�n

i=1 ciXi

Y � N
��n

i=1 ciE[Xi],
�n

i=1 c2
i �

2
xi

�
n��
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Gaussian distribution 

P (|x� µ| < �) = 68.3%

P (|x� µ| < 3.�) = 99.7%
P (|x� µ| < 2.�) = 95.4%

Estimators are usually linear combinations of stochastic 
variables, hence follow a Gaussian distribution 
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Central Limit Theorem 

The distributions Xi should not have the same PDF: 
 
 
 
 
 

 
 
Our particle detectors are typically complex instruments where 
particles are reconstructed from several “hits” which are combined 
into estimators for the four-momentum of the particle. 
   Gaussian resolution functions 

Y Y =
�n

i=1 ciXi
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Response & resolution 

If I put in my detector a particle with variable value X=xin, I will 
observe it at another value X=x’ according to some distribution. 
 
 
 
 
 

 

xin = 40 GeV 

X 
xin 

bias/response 

resolution 

Stochastic effects from 
 

①  the detector granularity 

②  the detector instrument 

③  the physics (eg. jet 
reconstruction) 
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Resolution functions 

Detectors make our life more complicated, but are needed! 

①  the detector granularity 
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Resolution functions 

Detectors make our life more complicated, but are needed! 

①  the detector granularity 
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Resolution functions 

Detectors make our life more complicated, but are needed! 

The more granular the detector, the more expensive the detector! 

①  the detector granularity 
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Resolution functions 

Physics itself can smear the “true” direction or energy of a particle 
 
 
 
 
 
 
 
 
The incoming direction or energy is altered in a stochastic way and 
the expected behavior can be described by models put in the 
simulation of collision events at particle detectors. 

multiple scattering 

particle 

energy loss of particle 
(stopping power) 

②  the detector instrument 
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Resolution functions 
The resolution function describes the stochastic distribution of the 
observable variable X (eg. pT) for fixed settings before the 
measurement. 
 
 
 
 
 
 
 

 
One can reflect both the variance (resolution) and the bias 
(response) of the estimator into a response matrix. 

pT
true = 40 GeV 

Gaussian-like due 
to the Central 
Limit Theorem 

pT observed 

resolution 

p
T true = 40 G

eV
 

12% resolution 

granularity + instrument + physics 
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Response matrix 

The response matrix from MC simulation 
 
 
 
 
 
 
 

in
co

m
in

g 
pa

rto
n 

en
er

gy
 (Y

) 

measured jet energy (X) 

Yin = 40 GeV 

X 
Yin 

bias/response 

resolution 

matrix Rij = Prob(obs in bin i | true value in bin j) 
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From TH  to EXP distributions 

Most of the resolution functions R(X,X’) are Gaussian 
 
 
and reflect the stochastic aspect of the measurement of X’ given 
the initial “true” value X. 
Hence the measured distribution becomes (“convolution”) 
 
 
It is the distribution g(x’) which is sampled by the experiment. 
Including physics (   ) and detector “nuisance” (   ) parameters: 

R(X, X �) = 1�
2��2 exp

�
� 1

2

�
x�x�

�

�2
�

g(x�) =
�

R(x, x�)fX(x)dx

����

g(x�|��, ��) =
�

R(x, x�|��)fX(x|��)dx
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From TH  to EXP distributions 

We want to know something about the physics model fX(x|θ) 
using a finite amount of measurements of stochastic variable X’. 
 

The data of the measurements will be collected into a histogram 
with a finite amount of bins. In general two options: 
 

①  With simulation which incorporates the stochastic behavior of 
the response matrix R, we can predict the expectation value in 
each bin (= the bin content). And compare the data histogram 
with these expectations which depend on the parameter θ. 

②  When the response matrix R is well-known we can try to 
inverse the problem and estimate directly fX(x|θ). 

g(x�|��, ��) =
�

R(x, x�|��)fX(x|��)dx
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Unfolding techniques 
Estimating probability distributions fY(y) with an additional 
stochastic effect on Y from the measurement process (effect of 
R), in case when no parametric form is available 

(“inverse problem”) 

                      

fY(y) is an unknown PDF      histogram with M bins 

  
  
  
  
  
  
  
  
  
  
 µ

i 

                     
µi 

pi 

µi expectation value    
 

       
 
 

“functional” 
 
“histograms” 

�µ = (µ1, . . . , µM )

fmeas(x) =
�

R(x|y).ftrue(y)dy

E[ni] � �i =
�M

j=1 Rijµj

                     y response function R(x|y) or response matrix Rij 
Rij = Prob(obs in bin i | true value in bin j) 

�N
j=1 Rij = Prob(obs anywhere | true value in bin j) = εj  (efficiency) 

� E[�n] = �� = R̃�µ
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Unfolding techniques 
With pictures… � E[�n] = �� = R̃�µ

                     x 

                     
y 

                     y 

µi 
 
 
 
 
 
 
 
 

× = 

“true” 

expected experiment simulation & theory 

                     x 
 

νi 
 
 
 
 
 
 
 
 

expected  
observation 

N bins M binsN x M
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Unfolding techniques 
Take care of the background 

                     x 

                     
y 

               y 

µi 
 
 
 
 
 
 
 
 

× = 

“true” 

expected experiment simulation & theory 

                     x 

νi 
 
 
 
 
 
 
 
 

expected  
observation 

E[�n] = �� = R̃�µ + ��

               x 

N bins N bins

βi 
 
 
 
 
 
 
 
 

+ 

M bins
N x M
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Unfolding techniques 
With pictures…                                     now estimate  �� � �̂�E[�n] = �� = R̃�µ + ��

                     x 

                     
y 

               y 

µi 
 
 
 
 
 
 
 
 

× = 

“true” 

one experiment simulation & theory 

single-experiment 
observation 

               x 

N bins N bins

βi 
 
 
 
 
 
 
 
 

+ 

M bins
N x M

ni 
 
 
 
 
 
 
 
 

                     x 
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Unfolding techniques 
•  Now we should invert the equation to estimate 

 
•  Suppose every ni has a Poisson distribution, then the maximum 

likelihood estimator of      is simply the observed 

•  Hence we have 
•  One can show that this estimator is the most efficient one (i.e. 

with the smallest variance) among all unbiased estimators 
•  But…  

E[�n] = �� = R̃�µ + ��

�µ� �̂µ

�µ = R̃�1 · (�� � ��) 

�� �n

�̂µ = R̃�1 · (�n� ��)

P (ni|� = �i) = �
ni
i

ni!
e��i

�̂i = ni 
�

�L(�i|ni)
��i

�

�i=�̂i

= 0
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Unfolding techniques 
•  Using the simple equation 
•  We get a dramatic effect…  

•  Huge fluctuations because of the fluctuations of      around 
•  Introduce some bias (systematic uncertainty) to reduce the 

variance (statistical uncertainty)  regularized unfolding 

�̂µ = R̃�1 · (�n� ��)

“true” distribution observed distribution 

expected 

one experiment 
�̂µ

�n ��



Pag. 36 Theory versus Experiment - Experimental Techniques in Particle Physics - Jorgen D'Hondt (Vrije Universiteit Brussel) 

Regularized Unfolding 

Still use the same master equation 
But adapt the Likelihood in the Maximum Likelihood method 

with α is the regularization parameter and S(µ) the regularization 
function. Hence                          , but the solution of  

 
 
Different options for the regularization parameter and function. 
Examples in eg. arXiv:hep-ex/0208022 and arXiv:1104.2962 

�̂µ = R̃�1 · (�̂� � ��)

�̂� �= �̂�MaxLik = �n

lnL(��|�n) �� lnL�(��|�n) = �lnL(��|�n) + S(��)

�
�lnL�(�i|ni)

��i

�

�i=�̂i

= 0 �� �̂i = . . .
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Regularized Unfolding 

 
The regularization function needs to smoothen the likelihood. 
Therefore a good choice could be the mean square of the second 
derivative. 
 
This is related to the amount of curvature in the expectation value 
of     versus the measurant X. 
 

The value for the regularization parameter is a trade-off between 
variance and bias. Hence it can be chosen to minimize both 
simultaneous. 

lnL(��|�n) �� lnL�(��|�n) = �lnL(��|�n) + S(��)

S(��) �
�N�2

i=1 (��i + 2 · �i+1 � �i+2)
2

��

MSE = 1
N

�N
i=1(V ar[µ̂i] + b̂2

i ) with bi = E[µ̂i]� µi
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Alternative to unfolding 
•  Using simulations a simple method exist with multiplicative 

correction factors. 

•  The bias of the estimator is 

Only no bias if the MC simulated model is correct, 
and the estimators are pulled towards the MC 
model used for the correction factors Ci … not good! 
 simply compare       directly with  

µ̂i = Ci(ni � �i) Ci = µMC
i

�MC
i

               y 

µi 
 
 
 
 
 
 
 
 

“true” 
M bins

                     x 

νi 
 
 
 
 
 
 
 
 

expected  
observation N bins

Ci = 

here N=M

bi =
�

µMC
i

�MC
i

� µi

�sig
i

�
�sig

i (�sig
i = �i � �i)

�n ��

simple method does not take into account all correlations 
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Why unfolding ? 

①  Comparison between experiments 

②  Comparison with new theories (or other theories which 
experimentalists have not considered) 

Unfolding in ROOT: RooUnfold (arXiv:1105.1160) 
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Examples from the LHC 

The charge asymmetry AC in top quark pair events: 
 
 
where N+/- reflects the amount of events for which 
is either positive or negative.  

�|y| = |yt|� |yt̄|
AC = N+�N�

N++N�

observed 
unfolded 

response matrix 

arXiv:1207.0065
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Addendum: Rivet

“Rivet is a library and set of programs which produce 
simulated distributions which can be directly compared 
to measured data for MC validation and tuning studies. 
It can also be used without reference data to compare 
two or more generators to each other for regression 
testing or tune comparison. The Rivet library contains 
the tools needed to calculate physical observables from 
HepMC files or objects, a large set of important 
experimental analyses, and histogramming tools for 
data comparison and presentation.” 

http://rivet.hepforge.org/
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Summary of part 1 
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Summary of part 1 

Theory needs to meet experiment! 

①  Nature at the quantum level is stochastic … deal with it! 

②  Fundamental physics is reflected in distributions fX(x|θ) 

③  Detector nuisance effects: 

④  The distributions                 are measurable 

⑤  Unfolding techniques can give you fX(x|θ) back… 

g(x�|��, ��) =
�

R(x, x�|��)fX(x|��)dx

g(x�|��, �)
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Lecture 2 – pre-view 
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Lecture 2 
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The basics in these lectures 

Part1 : “Theory meets experiment” 
①  Our QFT description of Nature is a stochastic one 
②  General stochastic distributions in physics 
③  From theoretical to experimental distributions 
④  ... and back: unfolding techniques 
⑤  Examples from the LHC at CERN 

Part 2 : “Experiment meets theory” 
 

①  Experimental aspects to accumulate experimental data 
②  Selection of the dedicated signal 
③  Performing measurements & parameter estimation 
④  Claiming a discovery of new physics or setting limits 
⑤  Examples from the LHC at CERN 
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“Experiment meets theory” 

①  Collecting experimental data 
From detectors, over triggers to collision data at the LHC 

 

②  Selection of dedicated signals 
Hypothesis testing, efficiency versus purity, use of Monte 
Carlo simulation, optimal event selection, significance 
 

③  Performing measurements 
Concepts of parameter estimation, counting experiments 
versus fitting distributions, least-square and maximum 
likelihood method, Neyman confidence belts (extension to 
Feldman-Cousins method) 
 

④  Claiming discovery or setting limits 

Systematic uncertainties and significance, the CLs method 

physics/0311105
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The Trigger… with pictures 

48 
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The Trigger… with pictures 

49 

collision event 
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The Trigger… with pictures 

50 

detector 
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The Trigger… with pictures 

51 

detector 
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The Trigger… with pictures 

52 

detector 

Wait until you see something interesting 
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The Trigger… with pictures 

53 

detector 

sometimes bad luck… 
too much interesting collisions 
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The Trigger: general layout 

54 
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Signal selection 
Typically we want to study rare events 
Need to identify these events!  
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Hypothesis testing 

     variable 

     variable 

Signal 
(H0) 

Background 
(H1) 

cut  

error  
type 1 

error  
type 2 

“Error of type-1”: rejecting a signal event 
“Error of type-2”: accepting a background event 

  or 
εsignal = signal efficiency = # Selsign / total # signal events 
εbck    = background efficiency = # Selbck / total # background events 

Selsign 

Selbck 

remove 
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Hypothesis testing 

     variable 

     variable 

Signal 
(H0) 

Background 
(H1) 

cut  

error  
type 1 

error  
type 2 

“Error of type-1”: rejecting a signal event 
“Error of type-2”: accepting a background event 

  or 
εsignal = signal efficiency = # Selsign / total # signal events 
εbck    = background efficiency = # Selbck / total # background events 

Selsign 

Selbck 

remove 

ε s
ig

na
l 

“purity”=1-εbck 

(1;1) 
vary the “cut-value” 

Where to cut on this variable? For a discovery 
by counting the number of events, need the 
largest significance  

Sign = S�
B

     cut-value variable 
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Significance 

The significance is influenced by systematic uncertainties 
 
 
 
The imprecision of the model of R and fX has to be taken into 
account when you estimate the background (and signal) rate after 
the event selection cuts  for example an effect of ΔsystB 
 

The significance is the amount of “standard deviations” the signal 
excess (=S) is above the background level (=B). 

g(x�|��, ��) =
�

R(x, x�|��)fX(x|��)dx

used to obtain the simulated distributions of variable x’ 

Sign = S�
V ar[B]

= S�
B

Poisson distribution 

�� S�
V arstat[B]+V arsyst[B]

= S�
B+(�systB)2

remember: Var[X] = σX
2 
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Significance 

Sign = S�
V ar[B]

= S�
B
�� S�

V arstat[B]+V arsyst[B]
= S�

B+(�systB)2

 
B = 100      Sign = 3 “sigma” 
S = 30 
ΔsystB = 0 
 
B = 100     Sign = 2.1 “sigma” 
S = 30 
ΔsystB = 10  
(hence 10% uncertainty on Bck rate) 
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Significance 

Sign = S�
V ar[B]

= S�
B
�� S�

V arstat[B]+V arsyst[B]
= S�

B+(�systB)2

 
B = 100      Sign = 3 “sigma” 
S = 30 
ΔsystB = 0 
 
B = 100     Sign = 1.3 “sigma” 
S = 30 
ΔsystB = 20  
(hence 20% uncertainty on Bck rate) 
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Optimal selection 

Multi-Variate Analysis  combine variables    into a single variable 
(optimal variable is the Likelihood Ratio variable from the optimal 

Neyman-Pearson hypothesis test) 

x1 

�x

P
D

F  

x2 

P
D

F  

x3 

P
D

F  

S B 

f1S(x1) 
f2S(x2) f3S(x3) f1B(x1) f2B(x2) 

f3B(x3) 

①  functional form fi(xi) not known because from ∞ events 
use Monte Carlo simulation to approximate this 
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Optimal selection 

Multi-Variate Analysis  combine variables    into a single variable 
(optimal variable is the Likelihood Ratio variable from the optimal 

Neyman-Pearson hypothesis test) 

x1 

�x

P
D

F  

x2 

P
D

F  

x3 

P
D

F  

h1
S(x1) 

h2
S(x2) h3

S(x3) h1
B(x1) h2

B(x2) 

②  histograms hi(xi) from finite amount of events 
(normalized & use lots of simulation to get a fine binning) 

h3
B(x3) 
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Optimal selection 

Multi-Variate Analysis  combine variables    into a single variable 
(optimal variable is the Likelihood Ratio variable from the optimal 

Neyman-Pearson hypothesis test) 

x1 

�x

LR
(x

1)
 

x2 

LR
(x

2)
 

x3 

LR
(x

3)
 

③  use histograms to calculate bin-per-bin a Likelihood Ratio 
④  fit these tendencies with an adequate function 

LR=1 LR=1 LR=1 

bin j � LRi(xi,j) = hS
i (xi,j)

hS
i (xi,j)+hB

i (xi,j)
�� fit �� LRi(xi)

LRi(xi)
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Optimal selection 

Multi-Variate Analysis  combine variables    into a single variable �x

ev
en

ts
 

⑤  combined into one variable per event 
most optimal variable if the variables xi are not correlated 

LR(�x) =
�3

i=1 LRi(xi)

LR(�x)

LR(�x)

S B 

ε s
ig

na
l 

“purity”=1-εbck 

(1;1) 
vary the “cut-value” 

x1 

x2 

x3 

LR(�x)

optimal 



Pag. 65 Theory versus Experiment - Experimental Techniques in Particle Physics - Jorgen D'Hondt (Vrije Universiteit Brussel) 

Optimal selection 

Multi-Variate Analysis  combine variables    into a single variable �x

when linearly correlated, first rotate the variable space 
the set of new variables                    can be used into a LR method 

 

(other MVA methods: Neural Networks, Boosted Decision Trees, 
Fisher Discriminant, … MVA in ROOT: http://tmva.sourceforge.net/ ) 

�X � = R̃ · �X

X X 

Y Y 
Y’ X’ 

Ω	
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Now we have the selected data 

NDATA events 

εsignal
MC  εbck

MC 

(typically parts from data itself) 

σsignal  σbck 

Lint   

counting experiments study the shape 

(in general you estimate parameters of the signal) 
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Parameter estimation: the basics 

g(x�|��, ��) =
�

R(x, x�|��)fX(x|��)dx

one of these  
is to be estimated 

could be one number per experiment, 
or a set of numbers per experiment 
 

①  number of selected events in data 

②  distribution of an observable 
variable per event 

construct an estimator which 
depends on the observed value(s) 
of x’ … hence the estimator itself 

is a stochastic variable 
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Parameter estimation: the basics 

spread 

�̂ = F ({x�})

�̂

G
(�̂

)

The estimator of θ is function of the measurements {x’}: 

It is a stochastic variable which follows a distribution :   G(�̂)

The distribution           depends on 

the value of the physics parameter 

itself. 

The uncertainty on the estimator is 

related to the variance of the 

distribution         . 

But how to quote an uncertainty on 

the physical parameter    itself? 

G(�̂)

G(�̂)

Central Limit Theorem 
Gaussian distribution 

�

�

�fixed
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Confidence belts (Neyman’s method) 
th

eo
re

tic
al

 p
ar

am
et

er
 θ
	


experimental measured quantity X= 

For each θ0, determine the 
distribution          . 
 

Take the central 1-α 
percent probability.  
 

Defines x1(θ0) and x2(θ0).  
 

These can be transformed 
into θ1(x,α) and θ2(x,α). 
 

Now the data value xdata 
provides the 1-α confidence 
interval for the true value 
of θ, namely [θ2,θ1]. �̂

1� �

G(�̂|�0)

1� � = P (�2(xdata,�) < �true < �1(xdata,�))

x d
at

a  
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1-α interval 

�̂

G
(�̂

)

1� �
�/2 �/2

�fixed
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Confidence belts (Neyman’s method) 
th

eo
re

tic
al

 p
ar

am
et

er
 θ
	


experimental measured quantity X 

Simplified with Gaussian 
distributions of the estimator. 
 
 
 
 
 
 
 
 
 

The confidence interval 
becomes symmetric. 

P (xdata � � < �true < xdata + �) = 68.3%

spread 

�̂

G
(�̂

)

σ	
σ	


G(�̂) � N (µ,�2)
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Feldman-Cousins 

Likelihood Ratio 
ordering principle 

r lik
el

i(R
m

ea
s)

 
P

(R
m

ea
s|R

ge
n)

 

Rgen=0.62 1� �

What to do when your measurement hints for a “non-physical” 
signal (eg. Branching Ratio above unity): Feldman-Cousins 
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Feldman-Cousins 

L(R|Rinput)
L(R|Rinput)
L(R|Rbest

input)

Feldman-Cousins  
CL bands 

where            is the most probable value of Rinput for a given R 
 

(automatic switching between central and one-sided confidence regions)  

Rbest
input

Used to define the 
two-sided interval 

68% conf int 
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Which estimator ? 

this could be any estimator 
(something which depends on the observed data) 

1� � = P (R2(Rdata,�) < Rtrue < R1(Rdata,�))
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Counting experiments 

g(x�|��, ��) =
�

R(x, x�|��)fX(x|��)dx

cross section 

number of events 

fixed integrated luminosity 

Poisson distribution 

effect of  
experiment 

observable stochastic 
(number of events 
selected) 

expected observable 
distribution 

# events (x’) 

g(
x’

)  

many pseudo-experiments 

d
at

a 

statistical uncertainty on estimator related 
to the spread of the distribution of x’ 

 

(systematics due to detector nuisance α , 
the model of R and theory nuisance θ) 

spread 

�̂signal = (NDAT A�Nbck)
�trigger·�signal·Lint
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Fitting distributions 

If the information on the physics parameter θ of interest is hidden 
in a distribution g(x’) rather than in an event rate, then we need 
to compare the expected distribution with the observed one. 

g(x�|��, ��) =
�

R(x, x�|��)fX(x|��)dx

binned data 
(least-square method) 

event-per-event 
(maximum likelihood method) 

�n = {ni} �x� = {x�
i}

i = 1 … #bins i = 1 … #events 



Pag. 77 Theory versus Experiment - Experimental Techniques in Particle Physics - Jorgen D'Hondt (Vrije Universiteit Brussel) 

Least-square method 

Expectation (binned) : 
Observed : ni  

g(x�|��, ��) =
�

R(x, x�|��)fX(x|��)dx

g(x�|��, ��, mt) �� hi(��, ��, mt)

�2 =
�n

i=1

�
ni�hi(��,��,mt)�

hi(��,��,mt)

�2

minimize χ2(mt) 

m̂t,LS
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Maximum Likelihood method 

Calculate for each event a likelihood 
 

Put them together 
 
Take the maximum of the likelihood  
or from the log-likelihood: 

g(x�|��, ��) =
�

R(x, x�|��)fX(x|��)dx

g(x�|��, ��, mt) �� L(mt|x�, ��, ��)

L(mt|�x, ��, ��) =
�N

i=1 L(mt|x�
i, ��, ��)

lnL(mt|�x, ��, ��) =
�N

i=1 lnL(mt|x�
i, ��, ��)

�
�lnL(mt|�x,��,��)

�mt

�

mt=m̂t,ML

= 0��

�� m̂t,ML = ...
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Systematic uncertainties 

There are uncertainties in the physics 
description fX as well as in the 
experimental modelling R. Be clever, 
for the dominant systematic 
uncertainties try to fit the nuisance 
parameter α together with the 
physics parameter θ of interest. 
 

This results in a reduced total 
uncertainty on the physics parameter 
of interest. 
 

Example: top mass measurement 
and the jet energy scale 

g(x�|��, ��) =
�

R(x, x�|��)fX(x|��)dx
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Confronting data with theory 

Is my fancy model of new physics predicting a new particle 
present in the collision data or not ? 

g(x�|��, ��) =
�

R(x, x�|��)fX(x|��)dx

g(m�
4l|��, ��, mH) =�

R(m4l,m�
4l|��)fX(x|��, mH)dm4l

For each value of mH we need to 
compare the model with data 

theory 

experiment 

Monte Carlo 
simulation 

g(m�
4l|��, ��, mH)�� data = {m�

4l,i}
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p-values 

Quantify the level of agreement between the model (=hypothesis 
H0) and the data without an explicit alternative hypothesis. 
 

Collect the data {xi} into one test statistics T (another stochastic 
variable), which has a distribution g(t|H0). If T is defined such 
that large values of t reflect a worse agreement with data, then 
the p-value is defined as: p =

��
tobs

g(t|H0) dt

t 

g(
t|H

0)
 

d
at

a p 

The p-value takes values between 0 and 1, 
and reflects the probability that a new 
experiment (in the same conditions) would 
results in a worse agreement with the 
hypothesis H0, given the hypothesis H0 is 
correct.  

Eg.:  t = �2 =
�nbins

i=1

�
ni�hi(mH ,��,��)�

hi(mH ,��,��)

�2tobs  
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p-values (eg. H4l) 

g(m�
4l|��, ��, mH)�� data = {m�

4l,i}

fixes the model value for test statistics t 

goodness-of-fit of model to data 
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The CLs method 
We have the freedom to choose a test statistics to calculate the p-
values from the data   , an example is based on the likelihood ratio 

s+b b 

The distribution of t can be obtained 
using “b-only” simulation or using  
“s+b” simulation. 
 

This is the optimal test statistics if 
one uses the value of CLS to 
characterize the signal confidence. 
 
 
For each mH a value of CLs using the 
data     is obtained. 

�n

1 – CLb  CLs+b  

CLs = CLs+b

1�CLb

Q(�n) = L(�n|s+b)
L(�n|b) �� t = �2lnQ(�n)

�ndistributions from MC simulation 

fixed mH 
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Setting limits (Higgs search) 

CLs = CLs+b

1�CLb
= ”p�value s+b”

1�”p�value b”

The distribution of CLs is obtained 
from simulation, and the green 
(yellow) band reflects for each 
value of mH the expected 1σ (2σ) 
interval if the data would be 
background only. 
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Claiming discovery (Higgs boson) 

… for most other analyses however the result is a limit … 

5σ = 1 in 3,5 million 
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Summary of part 2 
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Summary of part 2 

Experiment meets theory! 

①  Detectors make our life complicated… deal with it! 

②  The event selection (incl trigger) is essential in physics analyses 

③  Different methods to estimate parameters… learn the differences! 

④  When confronting data with theory limits are set or discoveries 
claimed 

⑤  Experimentalists have a hard (but fruitful) life… 

g(x�|��, ��, mH)�� data = {x�
i}
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Big summary… 

How to test your theory? 
 

 
 

①  Test it yourself on existing results  
 (part 1 of these lectures) 

②  Make it available to experimentalists to be 
included in their analyses 

 (part 2 of these lectures) 

g(x�|��, ��) =
�

R(x, x�|��)fX(x|��)dx


