

2A. Operation of the RPC detector

Piet Verwilligen

INFN Sezione di Bari

Capita Selecta in HEP Vrije Universiteit Brussel April 9-10, 2014

Resistive Plate Chamber detector

Overview

- ▶ RPC R&D done 1993 2003. First RPCs produced in 2003, first RPCs installed in 2007 and ready for beam in 2008.
- ▶ Performed long cosmic ray running in 2008 2009. Now 3 years of Run experience with *pp* collisions 2010–2012
- ▶ Phase I (2010-2020) :: RPC System designed to run for 10 years and to operate at $\mathcal{L} = 10^{34}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$
- ▶ Phase I (2020-2030) :: RPC System will be running for another 10 years beyond design specification ($\mathcal{L} = 5 \times 10^{34} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$)

Run-I experience crucial for

- ► Fine tuning of operation procedures, finding optimal working point and detector performance
- ▶ Investigate the **Longevity** of the system and understand the possible issues for operating the detector another 20 years
 - monitor the stability of the performance (efficiency, cluster size, intrinsic noise, currents)

Inactive Channels

Percentage of inactive channels stable between 2% and 2.5%

- Masked strips: mainly caused by noisy chambers due to electronic board failure (inside the chambers, not accessible since 2009).
- ▶ Inactive strips: mainly caused by failures of HV/LV channels. Some of them recovered soon after the beam dump

Noise

10

Noise rate (Hz/cm²)

- CMS continued data taking during inter fill periods of LHC (Cosmic + Background runs)
- For Noise measurements runs selected just before proton fills
- Result is hits due to Cosmic muons and due to noise in chamber / electronics
- Average noise lower than CMS requirements ()
- Average noise stable during three years of operation

- 3 HV Scans performed:
- oct 2011, jun 2012, dec 2012
- ► Efficiency Plateau is stable
- ► HV Turn On compatible
- ► **HV50** distribution comparable
- No ageing spotted so far

 HV Scan to optimize working point and to monitor ageing

Period	Int Lumi	Int Charge
11/2011	$40\mathrm{pb}^{-1}$	Few μ C
06/2011	$5.5{ m fb}^{-1}$	$< 1\mathrm{mC}$
12/2012	$27 { m fb}^{-1}$	\sim 3 mC

- Barrel Endcap difference in turn on curve due to different production (Italy – Korea)
- ▶ larger spacer size by $10\mu \text{m} \Rightarrow$ HV50 shift of 300V

 HV Scan to optimize working point and to monitor ageing

Period	Int Lumi	Int Charge
11/2011	$40\mathrm{pb}^{-1}$	Few μ C
06/2011	$5.5{ m fb^{-1}}$	$< 1\mathrm{mC}$
12/2012	$27 { m fb}^{-1}$	\sim 3 mC

- Barrel Endcap difference in turn on curve due to different production (Italy – Korea)
- ▶ larger spacer size by $10\mu \text{m} \Rightarrow$ HV50 shift of 300V

Corrections to the HV working point

Assuming[†] avalanche processes in gas depend only on the density (pV = nRT)

$$HV_{\mathsf{eff}} = HV_{\mathsf{app}} \cdot \frac{p_0}{p} \cdot \frac{T}{T_0}$$

but overcorrects the density effect, therefore reduce the correction:

$$\Delta \textit{HV} = \textit{HV}_{\text{app}} \!-\! \textit{HV}_{\text{eff}} = \textit{HV}_{\text{eff}} \!\cdot\! \left(\frac{\textit{p}}{\textit{p}_0} \cdot \frac{\textit{T}_0}{\textit{T}} - 1\right)$$

with a factor α:

$$\Delta HV = \alpha \cdot HV_{\text{eff}} \cdot \left(\frac{p}{p_0} \cdot \frac{T_0}{T} - 1\right)$$

thus:

$$extit{HV}_{ ext{app}} = extit{HV}_{ ext{eff}} \cdot \left(1 - lpha + lpha \cdot \left(rac{ extit{p}}{ extit{p}_0} \cdot rac{ extit{T}_0}{ extit{T}}
ight)
ight)$$

† Not only the gas density depends on the temperature, also the bakelite resisistivity depends on the temperature.

Corrections to the HV working point

Assuming † avalanche processes in gas depend only on the density (pV = nRT)

$$HV_{\mathsf{eff}} = HV_{\mathsf{app}} \cdot \frac{p_0}{p} \cdot \frac{T}{T_0}$$

but overcorrects the density effect, therefore reduce the correction:

$$\Delta \textit{HV} = \textit{HV}_{\text{app}} \!-\! \textit{HV}_{\text{eff}} = \textit{HV}_{\text{eff}} \!\cdot\! \left(\frac{\textit{p}}{\textit{p}_0} \cdot \frac{\textit{T}_0}{\textit{T}} - 1\right)$$

with a factor α:

$$\Delta HV = \alpha \cdot HV_{\text{eff}} \cdot \left(\frac{p}{p_0} \cdot \frac{T_0}{T} - 1\right)$$

thus:

$$extit{HV}_{\mathsf{app}} = extit{HV}_{\mathsf{eff}} \cdot \left(1 - \alpha + \alpha \cdot \left(rac{ extit{p}}{ exttt{p_0}} \cdot rac{ extit{T_0}}{ exttt{T}}
ight)
ight)$$

† Not only the gas density depends on the temperature, also the bakelite resisistivity depends on the temperature.

RPC Efficiency

RPC Trigger cross section

 $trigger\ cross\ section = \frac{trigger\ rate}{Instantaneous\ Luminosity}$

- Clustersize variations due to atmospheric pressure changes
- Wider clustersize leads to higher trigger rates (straighter patterns)
- change in PAC Trigger Algorithm to trigger on Heavy Stable Charged Particles

RPC Efficiency

RPC Trigger cross section

 $trigger\ cross\ section = \frac{trigger\ rate}{Instantaneous\ Luminosity}$

- Clustersize variations due to atmospheric pressure changes
- Wider clustersize leads to higher trigger rates (straighter patterns)
- change in PAC Trigger Algorithm to trigger on Heavy Stable Charged Particles

Efficiency Measurement per detector unit

Efficiency Measurement

- Use redundancy of Muon System to measure Efficiency
- ► Track segment of CSC or DT pointing to RPC detector
- Use track segments associated to a real muon passing through CMS
- Average RPC efficiency 95% after 3 years of running

Efficiency Measurement per detector unit

Efficiency Measurement

- Use redundancy of Muon System to measure Efficiency
- ► Track segment of CSC or DT pointing to RPC detector
- Use track segments associated to a real muon passing through CMS
- Average RPC efficiency 95% after 3 years of running

MuonRadiography

- ▶ RPC Montitor Stream with reduced event content to keep CSC, DT & RPC hits
- ▶ Use high statistics of 2011 run and 2012 B,C,D runs ($\gtrsim 5 \, \text{fb}^{-1}$)
- Monitor inefficiency zones in time (work ongoing) important for ageing studies

Background Measurement per detector unit

Background Measurement

- ► Hit counting after discriminators (FEB) in 25 ns window
- No trigger decision involved
- No background discrimination: count all fired strips (muons + cosmic muons + noise + neutron background)
- ▶ Need correct for $\langle cls \rangle \approx 1.8$
- Higher background in top sectors barrel and closer to beampipe in endcap

Background Measurement per detector unit

Background Measurement

- ► Hit counting after discriminators (FEB) in 25 ns window
- No trigger decision involved
- No background discrimination: count all fired strips (muons + cosmic muons + noise + neutron background)
- Need correct for $\langle \text{cls} \rangle \approx 1.8$
- Higher background in top sectors barrel and closer to beampipe in endcap

RPC Background measurements

Barrel Av. Current / Inst. Lumi

Two ways to observe the effect of the hit rate

- hit counts after discriminator and currents drawn by the chambers
- average current is in agreement with measured rate (assuming experimental value of averaged charge per hit of ≈ 20–25 pC)
- ratio current / instantaneous luminosity & hit rate / instantaneous luminosity stable in time
- Careful Measurement of the background hit rates provides input for Phase-II studies
- Extrapolation linear hit rates to $\mathcal{L} = 5 \cdot 10^{34} \, \text{cm}^{-2} \text{s}^{-1}$ leads to:
- Maximum rate :: Barrel = $60 \, \text{Hz/cm}^2 \, \text{Endcap} = 150 \, \text{Hz/cm}^2$
- Average rate :: Barrel = $15 \,\text{Hz/cm}^2 \,\text{Endcap} = 40 \,\text{Hz/cm}^2$
 - Current system will be able to deal with those background levels

RPC Background measurements

Barrel Av. Current / Inst. Lumi

Two ways to observe the effect of the hit rate

- hit counts after discriminator and currents drawn by the chambers
- average current is in agreement with measured rate (assuming experimental value of averaged charge per hit of \approx 20–25 pC)
- ratio current / instantaneous luminosity & hit rate / instantaneous luminosity stable in time

Radiation Asymmetry Barrel

- lacktriangledown ϕ asymmetry observed by both RPC and DT
- ▶ MB4 and RB4 chambers exposed to *n*-background
- Cavern floor proves to excellent shielding
- ▶ Not much difference between chambers in iron feet (\$9,11) and chambers close to the floor (\$10)

Radiation Asymmetry Endcap

RPC — 8 TeV — 2012

- ▶ Rate in RE-2/3 \approx RE-2/3 (and ME-2/2 \lesssim ME-2/2)
- ▶ Origin found last week when opening YE-1 and YE-2
- Polyethylene tiles have not been installed on the back of disk YE-1
- Will be installed during LS1 (but need to be found first)

RE+2 — RE-2

Conclusions

- The CMS RPC system was performing very reliable during during Run-I (2010-12).
- ► The CMS RPC system was able to deliver good quality triggers at high efficiency and precise bunch crossing determination
- ightharpoonup The CMS RPC system had a contribution to the CMS down time of $\sim 1.5\,\%$
- At the end of Run-I, the fraction of active channels was about 97.5 %
- Most of inactive channels have been already recovered during LS1.
- After 3 years of LHC running the detector performance is within CMS specifications
- We have learned how to operate the RPCs in good conditions provinding stable trigger
- So far no ageing effects have been spotted ::
 - Average efficiency :: 95%.
 - ► Average cluster size :: 1.8 strips
 - ► Intrinsic noise :: 0.1 Hz/cm²
 - ► From the measured background :: within expectations

Gabriella Pugliese -

http://166.111.32.59/indico/getFile.py/access?contribId=17&sessionId=9&resId=0&materialId=slides&confId=1

